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The main aim of the class is to become familiar with Rabi flopping and its generalisation to quantum logic gates.
Therefore the main preparation is to look up Rabi flopping in a few books and learn or remind yourself about
it (e.g. quantum mechanics text, quantum optics text). In particular, you must be able to analyze thoroughly
the interaction of a two-level quantum system with an oscillating field.

The evolution of a two-level system with a periodic perturbation is a standard problem in (moderately advanced)
quantum mechanics, and can be found discussed in a number of textbooks. For example, Loudon “The quantum
theory of light”, Cohen-Tannoudji’s quantum textbook, Merzbacher, etc. Review articles on nuclear magnetic
resonance or ion trap quantum computing also contain useful material.

We will use

[1] D. J. Wineland and W. M. Itano, “Laser cooling of atoms,” Physical Review A 20, 1521–1540
(1979).

for a derivation of a basic result concerning interaction of a light field with a spatially confined particle. (This
is a classic reference for laser cooling of both free and trapped particles. Here we will be concentrating on some
general remarks from section II.C Laser cooling of bound atoms and an important result derived in section III
Quantum mechanical treatment—General aspects) so you don’t need to read the whole paper if you don’t want
to.)

We will consider the case of ion traps because they give good practice at seeing examples of Rabi flopping in the
“real world,” and because they introduce some useful insights into laser cooling. We will thus be working at the
boundary of the physics of atoms and light, and the ideas of quantum computation. Some useful information
is in

[2] A. M. Steane, “The Ion Trap Quantum Information Processor,” Appl.Phys. B 64, 623 (1997).

Download it from

http://www.physics.ox.ac.uk/users/iontrap/ams/teaching/lecture course.html

(under “Rabi flopping and quantum logic gates”).
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Questions

1. A two-level system has Hamiltonian H leading to energy levels E0, E1 > E0 for states |0⟩, |1⟩. It interacts
with an oscillating field which leads to the term V = V0 cosωt appearing in the Hamiltonian, where ⟨0|V0 |0⟩ =
⟨1|V0 |1⟩ = 0 and ⟨0|V0 |1⟩ = V . Analyse as thoroughly as you can the behaviour of the system (in the
rotating wave approximation). [A complete analysis involves first going to a frame rotating at freqency ω, then
applying the rotating wave approximation, then solving the time-independent Schrodinger equation which is
then obtained for the two-level system (eigenvectors and eigenvalues of a 2 by 2 matrix), and then returning to
the non-rotating frame]. Show that if the system is initially prepared in state |0⟩, then the population of the
other state |1⟩ as a function of time is

| ⟨1 |ψ(t)⟩ |2 =
Ω2

Ω2 + δ2
sin2

(
1

2

√
Ω2 + δ2 t

)
where h̄Ω = V and δ = ω − ω10 with E1 − E0 = h̄ω10.

2. Plot the population derived in q. 1 as a function of time for the cases
(a) δ = 0
(b) δ = Ω
(choose appropriate time scales and label your plot, of course).

3. Consider the shape of the resonance as a function of laser detuning. There are two interesting things one
may consider:
(a) The population of the excited state at time t = π/Ω, as a function of δ.
(b) The maximum value which the population of the excited state reaches over time, plotted as a function of δ.
Plot graphs of both these functions, using a sensible range of values for the detuning δ (i.e. ± several Ω).
(c) What is the width (FWHM) of the resonance?
(d) It is desired to flip an atom from one state to another by applying a π-pulse. A laser is available which has
sufficient intensity to give a Rabi frequency Ω = 2π × 1 MHz for the transition. The atom can be prepared
in the lower state with very close to 100% reliability. How precisely must the laser frequency be tuned to the
atomic resonance if the final population of the destination (upper) state is to be above 99% ?

4. In the following questions we will be considering the above ideas applied to trapped ions and generalised.

Suppose a single trapped has vibrational frequency ωz in an ion trap. If we put N ions in the trap, there are
various normal modes of oscillation in one dimension, the simplest being the centre of mass mode where all the
ions in a string just swing too and fro together. What is the vibrational frequency for the centre of mass mode?
With more ions the string gets heavier, so why doesn’t the vibrational frequency get smaller?

5. Now let’s allow some light to hit the ions. Learn about sidebands from Wineland and Itano (or elsewhere).
Sketch the emission spectrum for an ion emitting fluorescence on a line of natural width 100 kHz, confined in
a trap with vibrational (i.e. secular) frequency 1 MHz, where the amplitude of the ion’s oscillatory motion is
several wavelengths of the light.

6*. This question is starred because it involves a lengthy calculation and it is important that you don’t get
bogged down. The calculation is presented in detail in the Wineland and Itano paper around equation (21),
so everything is there to guide you. However, if you are short of time then first make sure you do the other
questions, and come back to this at the end. The central aim of this question is to derive equation (1). However,
if you don’t do the derivation yourself, then you can still use the answer in the further questions, which will
also bring out what it means in physical terms.

The matrix element for electric dipole radiation is ⟨ψ2| (e/m)pel · A |ψ1⟩ where pel is the momentum of the
optically active electron and A(rel) is the vector potential of the radiation at the position of the electron (see,
e.g., textbook by Merzbacher or Shankar or Woodgate if you don’t recognise this form). You have met the
matrix element when the electron is just moving around inside a stationary atom. If the atom itself can move,
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however, then we need to use

rel = R+ r, pel =
m

M
P+ p,

where R,P are the position and momentum of the centre of mass of the atom, M =Mn +m is the total mass,
and r,p are the positon and momentum of the electron relative to the centre of mass. Show that, to a very
good approximation,

⟨ψ2| (e/mc)pel ·A |ψ1⟩ = ⟨ϕ2| eik·R |ϕ1⟩E · d (1)

where ϕ1, ϕ2 are the initial and final states of motion of the whole atom, and d is the standard electric dipole
matrix element for the change of internal state of the atom. The argument is given in Wineland and Itano
around equation (21), but you may want to put it in your own fashion, with notation that seems clear to you.
Equation (1) is important and any atomic physicist having anything to do with laser cooling should know it.

7. Just to check that our equation makes sense, try the case that the atom is a free atom, and the initial and
final states of motion are travelling waves (i.e. momentum eigenstates). What does equation (1) tell us?

8. For a trapped atom, we have the standard quantum theory of simple harmonic motion. Look it up in a
textbook (my favourite is Shankar, Principles of Quantum Mechanics), and remind yourself of the form of the
ground state wavefunction. The information you need can also be found in ref [4], sections 3.1, 3.4 and 4.1.
The all-important Lamb Dicke parameter η is defined as the ratio

η =
∆Z

λ/(2π)

where ∆Z is the extent (1 standard deviation) of the probability distribution of an atom in the ground state of
the trap, and λ is the wavelength of the light. Show that η may also be written

η =

√
ER

h̄ωz
(2)

where ER is the recoil energy of an initially stationary free atom after emission of a single photon. Calculate
the recoil frequency ER/h for a Calcium ion illuminated with light resonant with the transition of wavelength
400 nm. Calculate the trap vibrational frequency needed to attain η = 0.1.

9. Remind yourself that the position operator Z in one dimension may be written Z = α(a + a†) where α is
related to ωz and the mass M (look it up). Show that kZ = η(a+ a†), and expand exp(ikZ) in powers of η up
to the quadratic term.

Put this result into equation (1), and hence derive the Rabi frequency for the following cases (up to O(η2),
using Ωfree to denote the Rabi frequency for the transition in a free atom):
(a) transition from g to e, in the ground state of motion.
(b) transition from g to e, for motional state n = 1.
(c) transition from g, n = 0 to e, n = 1 (first blue sideband)
(d) transition from g, 1 to e, 0 (first red sideband).

From this you can see why, for small η, a trapped atom tends to emit light without changing vibrational state,
and the second sidebands are very weak. Also, if we drive a transition on a sideband, it will go more slowly
than if we drive a carrier transition. Make sure you can see the truth of these assertions.

The general insight is that for a laser of given intensity, the Rabi frequency for a change in internal state depends
on how the motional state changes:

Ωnm = ⟨n| exp
(
iη(â† + â)

)
|m⟩Ωfree (3)

≡ CnmΩ (4)
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Cnm 0 1 2 3

0 1 iη −η2/
√
2 −iη3/

√
6

1 iη (1− η2) i
√
2η(1− η2/2) −

√
3/2 η2(1− η2/3)

2 −η2/
√
2 i

√
2η(1− η2/2) (1− 2η2 + η4/2) i

√
3η(1− η2 + η4/6)

3 −iη3/
√
6 −

√
3/2 η2(1− η2/3) i

√
3η(1− η2 + η4/6) 1− 3η2 + 3η4/2− η6/6

Table 1: Matrix element for vibrational-state-changing transitions.

where Ωfree is the Rabi frequency for a free ion, the states |n⟩ are vibrational energy eigenstates, Ω =
exp(−η2/2)Ωfree and a general expression (i.e. to all orders in η) for the factor Cnm is:

Cnm =
√
m!n!(iη)|f−m|

min(m,n)∑
j=0

(−1)jη2j

j!(j + |n−m|)!(min(m,n)− j)!
. (5)

To enable you to check your own calculations (and to make sure you have the right result for later questions),
values of Cnm are listed in table (1) for the low-lying vibrational levels.

10. Now we can play some tricks. Let us use the notation |g, n⟩, |e, n⟩ for the total state of a two-level ion
with internal energy levels g, e and vibrational states |n = 0, 1, 2, . . .⟩ in a trap (these are the standard harmonic
oscillator energy eigenstates). The excited state e is metastable so the spontaneous emission is negligible, and
the trap is tight so that η ≪ 1. The energy levels are separated by h̄ω0, and ωz is the trap frequency. The ion
is illuminated with radiation at frequency ωL. To get a reasonable approximation to the true evolution, treat
each pair of levels |g, n⟩ , |e, n′⟩ as a two-level system, concentrating on the first two vibrational states n = 0, 1
and n′ = 0, 1 to give four states in all. If the system is prepared in |e, 0⟩ then what happens to the population
of each of these four states when ωL = ω0?

11. What form does the evolution take when ωL = ω0 − ωz? (Describe it in general terms in words.)

12. Now we will examine one example of a controlled-NOT gate. Suppose we illuminate a trapped ion with
light at the carrier frequency ωL = ω0. We will pick a pulse time so that we get a 2π pulse on the transition
|g, 0⟩ ↔ |e, 0⟩: that is, the population flops and exactly flops back again, giving no net change in the state.
Now, the Rabi frequency for the transition |g, 1⟩ ↔ |e, 1⟩ is a little smaller (your expression from question 9(b)
should show this). What choice of Lamb Dicke parameter will permit the result that when a 2π pulse occurs
on |g, 0⟩ ↔ |e, 0⟩, a π pulse occurs on |g, 1⟩ ↔ |e, 1⟩?
For such a choice of time and η, write down the final state for each of the four initial states |g, 0⟩ , |e, 0⟩ , |g, 1⟩ , |e, 1⟩
and hence show that we have a controlled-NOT gate between the internal state and motional state. Which
degree of freedom is the control qubit, and which is the target qubit?

13. For a quantum computer, we need three main ingredients: to prepare the initial state precisely, to drive any
chosen coherent evolution, and to measure the final state with high reliability. How are each of these performed
in an ion trap quantum computer? In particular, how can we drive an evolution such that what happens to ion
B is determined by the state of ion A, for any pair of ions A,B in a string? (At this level I am just looking for
the general idea, rather than the precise details. Refer to ref [2].)
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