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Disclaimer. These notes are not guaranteed to be correct or complete, but they are a reasonable
guide and they are as correct and complete as possible without a lengthy process of re-checking. I
have included quite a lot of example explanatory statements, but have omitted some of the argument
and all the diagrams. Where argument is omitted, the phrase ‘Answers without derivation’ appears.
This is, in the event, rare. I have included in full explanatory arguments such as singlet-triplet
splitting, with reservations as I partially explained in the lecture, and will underline here.

The process of putting together an argument in your own words, without guidance, IS the learning
process. It cannot be avoided. Therefore my argument should be examined after you have tried hard
to make your own complete statement, not before. By giving you the opportunity to use my ‘answer’
as an after-check, which is a positive thing, I have unavoidably made more likely the situation that
you will read my statement after only a moderate effort of thought. You may well then feel that
you understand my statement, and so be satisfied, and yet after even a day you would be unable to
reproduce the argument because you never gave yourself the chance to experience what the issues
are for you: i.e. what you might have said but shouldn’t, and you what might easily overlook. This
chalice which I am offering you is therefore poisoned: you will be ok if you first take the antidote
(=hard mental labour).

1999. 3. The spin-orbit interaction is a coupling between the magnetic dipole moment of the
electron and the magnetic field it experiences:

H = −µ ·B.

Now µ = −gµBs′

where g = 2, µB =
eh̄

2m

and s′ is dimensionless spin.

Hence µ = − e

m
s

Field:

B =
−v ∧ E

c2
=

(−v ∧ r

c2

)
E

r
=

(
r ∧ p

mc2

)
e

4πε0r3
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But

c2 = 1/ε0µ0

and l = r ∧ p

So

−µ ·B =
e

m
s · l

(
µ0

m

e

4πr3

)

=
µ0

4π

e2

m2

1

r3
l · s

When Thomas precession is taken into account, this result is reduced by a factor 1/2: → form given.

Answers without derivation:

〈s · l〉 =
j(j + 1)− l(l + 1)− s(s + 1)

2
h̄2

3p 2P3/2:
s = 1/2, l = 1, l; j = 3/2

∆E =
(3/2)(5/2)− 2− 3/4

27× 1(3/2)(2)
· · ·

= 4.47× 10−6 eV

3p 2P1/2:
s = 1/2, l = 1, l; j = 1/2

∆E =
(1/2)(3/2)− 2− 3/4

etc

= −2× (previous result)

= −8.94× 10−6 eV

→ diagram

Electromagnetic interactions are insensitive to charge conjugation, therefore exactly the same result
is expected for anti-hydrogen.

a) Hydrogen-like sodium:
scaling is Z4, hence splitting (13.5× 10−6)× 114 = 0.197 eV.

b) muonic sodium: have m as well as Z dependance.

Consider a0mαc = h̄ ⇒ a0 ∝ 1/m

Hence overall, splitting is ∝ mZ4.
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mµ = 207me,
hence splitting = 207× 0.197 = 41 eV.

Last part is off the 2nd year syllabus

For neutral atom, the observed result is intermediate between hydrogen and the hydrogen-like ion.
It is more than for hydrogen, because when the electron penetrates the core it experiences a greater
electric field. It is less than for the ion, because the nuclear charge is nevertheless somewhat screened,
so the electric field, and hence the magnetic field, is smaller than that in the ion.

1999. 2. Last part only:

1s2s in helium: levels are 3S1 and 1S0, i.e.
n1 = 1, l1 = 0, n2 = 2, l2 = 0,
S = 1, L = 0, J = 1
and S = 0, L = 0, J = 0

The energy difference is caused by the Coulomb repulsion of the electrons. The state of the two
electrons must be antisymmetric w.r.t. exchange of the labels, since they are fermions. The solutions
can be written as a product of spatial and spin parts, so there are two possibilities:
either ψS(spatial) × χA(spin)
or ψA(spatial) × χS(spin)

where S,A signifies symmetric, antisymmetric

Now, the mean distance between the electrons is smaller in ψS(spatial) so this state has more energy
from Coulomb repulsion. This is the singlet (S = 0) state, since the singlet spin state is antisym-
metric.

why metastable:

1s2s 3S1 has only the ground state 1s2 1S0 below it. It cannot decay because of parity rule (∆l = ±1)
and selection rules on L (L = 0 ↔/ L = 0) and S (∆S = 0).

1s2s 1S0 cannot decay to the ground state because of parity and selection rules on L and J
(J = 0 ↔/ J = 0)

It cannot decay to 1s2s 3S1 because of parity and selection rules on L and S.

2000. 4.

Physical origin of terms: · · ·

Approximations:
(1) neglect relativistic corrections, including spin-orbit effect
(2) neglect nuclear effects (finite volume, magnetic dipole moment of the nucleus)
(3) neglect motion of nucleus (i.e. assume heavy nucleus)
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Electrons are identical fermions, and therefore their joint state must have the property

ψ(1, 2) = −ψ(2, 1)

i.e. it merely changes sign when the labels are exchanged (Exchange Principle).

Any state whose spatial part is ψa,b = ψa(r1)ψb(r2) does not have this property and so is not possible.

The state of the electrons can have the form
either ψS(spatial) × χA(spin)
or ψA(spatial) × χS(spin)

(both of these are antisymmetric overall).

χA is the singlet spin state (S = 0).
χS is the triplet group of spin states (S = 1).

The 1s2 configuration has both electrons in the same spatial state, so its spatial part must be
symmetric w.r.t. exchange:

ψspatial = φ1s(r1)φ1s(r2)

Therefore it must be a singlet: 1S0.

The 1s2s configuration has two possibilities:

ψS =
1√
2

(ψa,b + ψb,a)

ψA =
1√
2

(ψa,b − ψb,a)

The first must be the singlet, the second the triplet.

The first has more energy because the electrons are on average closer together in ψS so have more
energy from their Coulomb repulsion.

→ diagram

Answers without derivation:

to ionize He+ requires 22ER = 54.4 eV.
to ionize O7+ requires 82ER = 870 eV.

explanation in terms of screening. To make it quantitative, use the measured results to deduce
Zeff = Z − σ. Get σ = 0.64 for He, σ = 0.62 for O6+.

So both results are consistent with partial screening by a single electron.

2000. 3. Electric dipole selection rules:

4



1. total angular momentum:
J = 0 ↔/ J = 0
MJ = 0 ↔/ MJ = 0 when ∆J = 0
∆J = 0,±1
∆MJ = 0,±1

2. parity must change
⇒ ∆l = ±1

3. [Configuration: only one electron jumps this rule not required at 2nd year level]
4. when L and S are good quantum numbers:

∆S = 0,
[ ∆L = 0,±1 and L = 0 ↔/ L = 0 this rule, though correct, is not
needed in hydrogen and helium and it can be missed out at 2nd year level]

Justification:
In electric dipole radiation, the photon carries 1 unit of angular momentum, and angular momentum
is conserved. This explains the selection rules on J and MJ .

The parity must change because the electric dipole operator
∑

i−eri has odd parity, so only connects
even parity states to odd parity ones, and vice versa.

1s2 2p 2P1/2 – 1s2 3d 2D5/2 disallowed (∆J = 2)

1s2 2s2p 1P1 – 1s2 2p3p 1P1 allowed
(comment: 2s → 3p)

1s2 2s2 1S0 – 1s2 2p2 3P1 disallowed:
2 electrons changed, no parity change, ∆S = 1

alkali ⇒ S = 1/2.

4 “σ+/σ−” lines and 2 “π” lines
hence (diagram) J1 = 1/2, J2 = 3/2
(we are told J2 > J1)

L1 = 0 or 1.
L2 = 1 or 2.

Selection rules: as above, and
the π lines are ∆M = 0,
the σ+/σ− lines are ∆M = ±1.

∆E = −〈µ ·B〉
= gJµBBMJ

where Bohr magneton µB = eh̄/2me.
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Different L1, L2 will give different gJ hence different splittings and associated Zeeman spectrum.

L2 = 2 and we know L1 = 0 or 1. Hence, to obey ∆L selection rule, must have L1 = 1.

S = 1/2, L = 2, J = 3/2 ⇒ g2 =
3× 15/4 + 3/4− 6

2× 15/4

=
3× 15 + 3− 24

30
= 4/5

S = 1/2, L = 1, J = 1/2 ⇒ g1 =
3× 3/4 + 3/4− 2

2× 3/4

=
1

3/2

= 2/3

→ diagram.

MJ2 MJ1 relative position (g2MJ2 − g1MJ1)

3
2

1
2

3
2
· 4

5
− 1

2
· 2

3
= 6

5
− 1

3
' 0.867

1
2

1
2

1
2
·
(

4
5
− 2

3

)
= 2

3
− 1

3
' 0.067

−1
2

1
2

1
2
·
(
−4

5
− 2

3

)
= −2

5
− 1

3
' −0.73

1
2

−1
2

−1
2

−1
2

negative of the above

−3
2

−1
2

OR: For convenience, use

gJµBBM = (15gJ)µBB(2M)/30,

and 15g2 = 12,

15g1 = 10.
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2MJ2 2MJ1 relative position
3 1 3× 12− 1× 10 = 26
1 1 (12− 10)× 1 = 2
−1 1 (−12− 10) = −22
1 −1
−1 −1 negative of the above
−3 −1 → diagram

2002. 2. The quantum numbers L, S, J,MJ are associated with the angular momentum operators
for the electrons in the atom:

L̂ =
∑

i

l̂i = total orbital angular momentum

Ŝ =
∑

i

ŝi = total spin angular momentum

Ĵ = L̂ + Ŝ = total angular momentum

Ĵz = z-component of Ĵ

The eigenvalues of L̂2, Ŝ2, Ĵ2, and Ĵz are
L(L + 1)h̄2, S(S + 1)h̄2, J(J + 1)h̄2 and MJ h̄ respectively.

Electric dipole selection rules: as above.

Justification:
In electric dipole radiation, the photon carries 1 unit of angular momentum, and angular momentum
is conserved. This explains the selection rules on J and MJ .

The parity must change because the electric dipole operator
∑

i−eri has odd parity, so only connects
even parity states to odd parity ones, and vice versa.

The spherical harmonics Ylm have parity −1l, hence the parity rule together with the angular mo-
mentum change by at most 1, implies δl = ±1.

The electric dipole operator does not act in spin space, so ∆S = 0.

Its effect on L is limited by the same angular momentum conservation considerations as for J .

Comment: the single-electron jump rule is usually included under ‘LS coupling’ rules. However,
strictly speaking an atom could have configuration mixing (i.e. non-central field) but still a very
small spin-orbit effect, and hence have very well-defined L and S even though the configurations are
not well-defined. This means it can be described by LS coupling very well, and yet disobey the single-
electron jump rule. This fine distinction is 4th-year material; a part A finals examiner will therefore
not insist on the inclusion of this rule here. However, for good measure, I mention it anyway.

The electric dipole matrix element is a sum of terms, each involving the operator ri of a single
electron: ∑

i

〈ψ2| − eri |ψ1〉 .
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In the central field approximation the electrons move independently, so have product wavefunctions
ψ. If more than 1 electron jumps, each term in the matrix element will be a product of a non-zero
part and a zero part owing to the orthogonality of the single-electron wavefunctions.

If J does not change, the only way to add 1 unit of angular momentum from the photon, and still
get the same J , is if the direction of the vector J changes:

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

©©©©©©©©©©©©*

A
A
A
AU

J

J

1

This implies either its z component must change,
hence ∆MJ = ±1, or it is rotated in the x-y plane (∆MJ = 0). However, for MJ = 0 there is no
φ-dependence (eimφ) in the wavefunction, so the latter case is not in fact a change in the state, so
does not change the angular momentum direction, so is ruled out.

gJ characterises the coupling between the magnetic dipole of the atom and the applied magnetic
field. The energy shift (in 1st order perturbation theory) of a state MJ in level J is

∆E = 〈−µ ·B〉 = gJµBBMJ

where µB is the Bohr magneton.

Problem given: use information and selection rules, and count the lines in the Zeeman pattern →
deduce J1 = J2 = 2: (no other values work).

It remains to find L1.

g2 =
3× 6 + 2− 6

2× 6
=

14

12
= 7/6

g1 =
20− L(L + 1)

12
,

Try L = 1: g1 = 18/12 = 3/2 = 9/6

g2 = 7/6, g1 = 9/6:
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MJ2 MJ1 relative position
2 2 (7− 9)× 2 = −4
1 2 (7× 1− 9× 2) = −11
2 1 (7× 2− 9) = 5
1 1 −2
0 1 −9
1 0 7

etc. (symmetric pattern)

Wrong pattern. Quickly rule out L1 = 2 (gives same gJ so lines at zero).
Hence must be L1 = 3

(Check: g1 = (20− 12)/12 = 4/6

MJ2 MJ1 relative position
2 2 (7− 4)× 2 = 6
1 2 (7× 1− 4× 2) = −1
2 1 (7× 2− 4) = 10
1 1 3
0 1 −4
1 0 7 → correct. )

(Spectrometer apparatus: see practical course.

Don’t forget to filter out other spectral lines.)

2000. 1.

Apparatus: X-ray tube + crystal spectrograph (entrance slit, crystal of known structure and spacing,
photographic film)

Each wavelength scatters off the crystal at a different angle (Bragg scattering).

Describe main features . . . for you to do. Mention Bremsstrahlung, cut-off, characteristic lines in
series (and explain).

L-shell absorption edge: raise electron from n = 2 to first empty state.

Potassium: Z = 19: 1s2 2s2 2p6 3s2 3p6 4s,
i.e. n = 4
Rubidium: Z = 37:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s, i.e. n = 5
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The energy change in the absorption can be written

E = ER

[
(Z − σL)2

22
− (Z − σ′)2

n2

]

Solve for σL:

(Z − σL)2

4
=

E

ER

+
∼ 1

n2

⇒ (Z − σL) = 2
√

E/ER + ∼ 1/n2

⇒ σL = Z − 2
√

E/ER + ∼ 1/n2

potassium rubidium
Z=19 Z=37
n=4 n= 5
E=294 eV E=1840 eV

⇒ σL = 9.7 ⇒ σL = 13.7
Zeff = 9.3 Zeff = 23

Comments:
The nuclear charge is screened by the atomic electrons. We should expect contributions:

σL ' 2 from n = 1 electrons
+ ∼ 8/2 from n = 2 electrons
+ contribution from electrons in higher

shells, especially those in s states.

For rubidium there are a further 27 electrons, compared with 9 for potassium, so expect larger σL as
observed.

( Could mention external screening.)

Kα emission line is at

E = ER

[
(Z − σK)2

12
− (Z − σL)2

n2

]

with σK ' 2 to 10, and σL ' 6 to 20, both increasing slightly with Z.

The wavelengths vary smoothly with Z because σK and σL don’t change dramatically as Z increases.
With each new period in the periodic table a new s-state is introduced, which causes a slightly larger
than normal increase in σK and σL, but this is still a small effect compared to (Z − σK)2.

Rubidium: observe Kα at 13.4 keV. → deduce σK = 3.5.

Potassium: guess σK ' 2
⇒ Kα energy is E ' 3600 eV.

10



We can be confident that σL < 3.5 since potassium has fewer electrons than rubidium.
Therefore E < 4110 eV.

(Also, it is very likely that σL > 1 so a lower bound is
E > 2970 eV.)

2002. 3.

Electron screening:
Each electron in a multi-electron atom experiences a net electric field from the nucleus and the other
electrons. The charge distribution of the electrons is approximately spherically symmetric, especially
for the inner shells, so, using Gauss’ theorem, the net electric field at radius r is the same as that due
to a point charge at the origin of charge Z − σ, where σ quantifies the degree to which the negative
electron charge thus ‘screens’ the positive nuclear charge.

The absence of one electron can be regarded as a single ‘hole’ moving in this field. Hence we propose
the formula for the energy levels:

En,l =
hcR(Z − σn,l)

2

n2

(positive because the hole has positive charge).
From the form of the wavefunctions, we should expect σn,l to decrease with n and l.

Spectrometer: as before.

Reasoned estimate: in order to observe the complete X-ray line spectrum, it must be possible to
eject a K shell electron from the atom. The required energy is E = hcR(34− σ1,0)

2.

Estimate σ1,0 ' 2, since only 1 other K-shell electron and the other electrons do not contribute
greatly to σ1,0. In any case the E estimate is not sensitive to this.

Thus E ' 13.6× (32)2 ' 14 keV.

Spectrum:
The high energies are of order of E, so are in the K series.
The fine structure decreases with n.
σn,l decreases with l.

→ diagram.

Notice

1.492− 1.486 = 0.006

12.496− 12.490 = 0.006

Using diagram, this must be the splitting of 3p.

Z = 34 so 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4 , i.e. n = 4

The transition at 12.652 keV is to 4p, but this means the hole is in the outer shell, i.e. the atom is
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just ionized, i.e. energy=0.
⇒ energy of 1s is 12.652 keV.
Other energies

12.652− 11.182 = 1.47

12.652− 11.222 = 1.43

12.652− 12.490 = 0.162

12.652− 12.496 = 0.156

0.162 + 1.486 = 1.648 (= 0.156 + 1.492)

Approximations: central field model of the ion (hence n, l). Ignore the fact that the ion might be
left in an excited state of the valence electrons (small energies, of order eV).

Deducing σn,l:
We now know the energies, so use
E = ER(Z − σ)2/n2

⇒ Z − σ = n
√

E/ER ⇒ σ = Z − n
√

E/ER

There is an ambiguity in the question. I assume the σ for levels of low n and l are required.
Hence

n l j σn,l

1 0 1/2 3.50
2 0 1/2 12.0
2 1 1/2 13.2
2 1 3/2 13.5

(The levels of least energy are 4s, 4p and the excited states of valence electron, all these have σ ' 33).

Comments: σ1,0 is small, because when the hole is in the ground state the mean radius of the orbit
is small, so is not well screened from the nuclear charge. σ2,1 > σ2,0 because l states have larger
mean radius than s states. There are 2 electrons in a full K shell, and 8 in a full L shell. The values
∼ 3.5 and ∼ 12 or 13 are therefore roughly of the expected size, being larger owing to all the other
electrons in higher shells.

Note the fine structure splitting of 3p: this is from spin-orbit effect, so not well modelled by a
‘screening’ argument which is based on central field approximation.

1998. 2.

Rate equations for population:

dN2

dt
= −A21N2 + B12ρN1 −B21ρN2

A21 = rate coefficient for spontaneous emission
B12 = rate coefficient for absorption
B21 = rate coefficient for stimulated emission
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Consider a gas of atoms in thermal equilibrium with thermal radiation at temperature T :

ρ =
8πhν3

c3

1

ehν/kBT − 1
dN2

dt
= 0 (thermal equil ⇒ steady state)

⇒ N2(A21 + B21ρ) = B12ρN1

⇒ N2

N1

=
B12ρ

A21 + B21ρ
.

But
N2

N1

=
g2

g1

e−hν/kBT Boltzman distribution

⇒ g2

g1

e−hν/kBT =
B12/B21

A21

B21

1
ρ

+ 1

=
B12/B21

A21

B21

c3

8πhν3 (ehν/kBT − 1) + 1

True for all T

⇒ A21

B21

c3

8πhν3
= 1,

g2

g1

=
B12

B21

.

⇒ g2B21 = g1B12, A21 =
8πhν3

c3
B21

⇒ g2A21 =
8πhν3

c3
g1B12.

diagram · · ·
dN3

dt
= S3 − A32N3

dN2

dt
= S2 + A32N3 − A21N2

dN1

dt
= A21N2 −X

st. state: S3 = A32N3 ⇒ N3 = S3/A32.

N2 =
S2 + A32N3

A21

=
S2 + S3

A21

.

⇒ N3

N2

=
S3

A32

· A21

S2 + S3

=
S3

S2 + S3

A21

A32

,

N3 −N2 =
S3

A32

− S2 + S3

A21

=
A21S3 − A32(S2 + S3)

A32A21

.
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So
N3

N2

> 1 when
S3

S2 + S3

A21

A32

> 1

⇒ S2

S3

<
A21

A32

− 1

If N3 > N2 get population inversion. In this case the stimulated emission exceeds the absorption,
so we get gain, i.e. coherent amplification of the light, on the transition 3 → 2. This is how a laser
works.

diagram · · ·
dN3

dt
= S3 − A32N3 + B23ρN2 −B32ρN3

dN2

dt
= S2 + A32N3 − A21N2 −B23ρN2 + B32ρN3

dN1

dt
= A21N2 −X

st. state: 0 = S3 − A32N3 + B23ρN2 −B32ρN3

0 = S2 + A32N3 − A21N2 −B23ρN2 + B32ρN3

add: 0 = S3 + S2 −N2A21

⇒ N2 =
S2 + S3

A21

.

⇒ N3 =
S3 + B23ρ

(
S2+S3

A21

)

A32 + B32ρ
.

⇒ N3 −N2 =
S3 + B23ρ

(
S2+S3

A21

)

A32 + B32ρ
− S2 + S3

A21

=
S3A21 + B23ρ (S2 + S3)− (A32 + B32ρ)(S2 + S3)

A21(A32 + B32ρ)

Now g2 = g3 ⇒ B23 = B32

⇒ N3 −N2 =
S3A21 − A32(S2 + S3)

A21(A32 + B32ρ)
.

So factor
(N3 −N2)(with rho)

(N3 −N2)(without rho)
=

A32

A32 + B32ρ
.
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Evaluate:
1

1 + B32

A32
ρ

B32

A32

=
c3

8πhν3
= 7.49× 1012 m3/Js.

Flux per δf is Φ = 1014 m−2 s−1 Hz−1

Suppose flux passes through area A for time t :
ΦAt photons Hz−1

⇒ ΦAthν energy Hz−1

This energy fills a volume ctA

⇒ ρ =
ΦAthv

c tA
(energy Hz−1/volume)

=
Φhν

c
= 1.326× 10−13 Jm−3 Hz−1

⇒ Factor =
1

1 + 7.49× 1012 × 1.326× 10−13

= 0.50

2000. 5.

(a) Each atom in the gas has a velocity. The light observed along a given direction z has its frequency
f Doppler-shifted by

∆f = f
vz

c
,

vz = component of velocity along the line of sight. The distribution of velocities is Gaussian (from
kinetic theory), with a standard deviation δvz given approximately by

1

2
M(δv)2 ' 1

2
kBT, M = mass of atom

⇒ width ' 2δvz ' 2
√

kBT/M

Hence the shape of the spectral line is Gaussian, and line width

∆f ' f

c
2
√

kBT/M

(Typical number could be 100’s of MHz, optical transition at room temperature)
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(b) Natural decay of a energy level gives it a finite lifetime τ . Therefore an emitted wave must decay
exponentially. Fourier analysing this, we find a Lorenztian distribution of frequency components,
with full width at half maximum such that ∆ω = 1/τ , so

∆f =
1

2πτ

(c) Collisions between atoms interrupt the phase of the emitted wave. Fourier analysis of such a
wave again gives a Lorenztian distribution of frequency components. If τ is the mean time between
collisions then the FWHM is

∆f =
1

2πτ

Potassium: Doppler: find FWHM:

e−(1/2)Mv2/kBT =
1

2

⇒ (1/2)Mv2

kBT
= ln 2

⇒ v =
√

2 ln 2kBT/M

⇒ ∆vFWHM = 2
√

2 ln 2kBT/M

⇒ ∆ν̃FWHM

ν̃
=

∆v

c

=
2
√

2 ln 2× 1.38× 10−23 × 300/39× 1.66e− 27

3× 108

= 1.99× 10−6.

Decay rate = 1/τ = 3.7× 107 s−1

⇒ natural lifetime broadening ∆f =
1

2π
3.7× 107 = 5.89 MHz

f = c/(766 nm) = 3.914× 1014 s−1

⇒ ∆ν̃FWHM

ν̃
=

∆f

f
= 1.50× 10−8.

Collision broadening:
mean time t between collisions:

v t σ n = 1

⇒ t =
1

vσn

σ ' π × (atomic diameter)2 ' π(10−10)2 = 3× 10−20 m2
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PV = RT ⇒ P =
NRT

V N
= nkBT

⇒ n =
5× 104

kB × 300
= 1.21× 1025 m−3

v '
√

kBT/M = 253 ms−1

⇒ t ' 3 ns

⇒ ∆f =
1

2πt
' 53 MHz

⇒ ∆ν̃

ν̃
= 1.4× 10−7
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