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1999. 1. The quantum defect δ is a factor introduced to convert
the formula for hydrogen energy levels so that it can be used for
alkali atoms:

E(n, l) = − ER

(n− δ)2

This is based on the central field model of the atom, it takes
into account the shift in energy due to the fact that the central
potential is not ∝ 1/r.

This is useful because for a given atom the value of δ turns out
to be almost independent of n. Therefore one can reconstruct the
complete energy levels from only a few numbers.
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a) δ decreases as l gets larger because for large l the valance elec-
tron is more likely to be far from the core, and in this region the
potential is more hydrogen-like. For small l the electron penetrates
the core, so is less screened and more tightly bound.

b) Far from the core, the potential is always hydrogen-like, but
within the core it gets deeper as the atomic number increases.
Therefore δ is larger for heavier alkalis.

3



Absorption spectrum ⇒ transitions from the ground state.

Sodium, 11 electrons ⇒ 1s2 2s2 2p6 3s ⇒ n = 3 ground
state.

Series limit ⇒ ionization energy is 1/241 nm = 4.149 × 106

m−1

= 0.3781R (in wavenumber units)

Hence 0.3781 =
1

(3− δs)2

⇒ δs = 1.37
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First doublet is 3s–3p
Wavenumber 1/589.3 nm = 1.697× 106 m−1 = 0.1546R.

Hence (0.3781− 0.1546) =
1

(3− δp)2

⇒ δp = 0.885

2nd doublet is 3s–4p.

1

(4− δp)2
= 0.1030

⇒ 4p is above ground state by

(0.3781− 0.1030)R

= 0.275R = 3.018× 106 m−1

⇒ Wavelength is 1/ · · · = 331 nm
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Next series is also doublets, so it must be 3p–ns.
Find 4s energy:

1

(4− 1.37)2
= 0.1446

Recall 3p energy is at (0.3781 − 0.1546) = 0.2235 Hence 4s is
above 3p by

(0.2235− 0.1446)R

= 0.0789R = 865849 m−1

⇒ Wavelength is 1/ · · · = 1160 nm

Series limit is given by 3p energy, i.e. 1/0.2235R = 408 nm.
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Spectrograph . . .

The calibration is done by allowing light from a source of known
wavelengths to enter the spectrograph and fall on the same film
(or CCD) without changing the conditions. A fit to the known
line positions will then allow the unknown ones to be determined.
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1999. 3. The spin-orbit interaction is a coupling between the
magnetic dipole moment of the electron and the magnetic field it
experiences:

H = −µ ·B.

Now µ = −gµBs/h̄

where g = 2, µB =
eh̄

2m
and s is spin operator.

Hence µ = − e

m
s

Field:

B =
−v ∧ E

c2
=



−v ∧ r

c2



E

r
=



r ∧ p

mc2




e

4πε0r3
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But

c2 = 1/ε0µ0

and l = r ∧ p

So

−µ ·B =
e

m
s · l



µ0

m

e

4πr3




=
µ0

4π

e2

m2

1

r3
l · s

When Thomas precession is taken into account, this result is re-
duced by a factor 1/2: → form given.
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Use 1st order perturbation theory:
energy shift ∆E = 〈H〉
Now j = l + s
so j2 = l2 + s2 + 2s · l
Hence

〈s · l〉 =
j(j + 1)− l(l + 1)− s(s + 1)

2
h̄2

So

∆E =
µ0

4π

e2h̄2

2m2

j(j + 1)− l(l + 1)− s(s + 1)

2a3
0n

3l(l + 1/2)(l + 1)

Now
µ0

4π

e2h̄2

2m2

1

2a3
0

= 3.622× 10−4 eV
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3p 2P3/2:
s = 1/2, l = 1, l; j = 3/2

∆E =
(3/2)(5/2)− 2− 3/4

27× 1(3/2)(2)
· · ·

= 4.47× 10−6 eV
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3p 2P1/2:
s = 1/2, l = 1, l; j = 1/2

∆E =
(1/2)(3/2)− 2− 3/4

etc

= −2× (previous result)

= −8.94× 10−6 eV

→ diagram
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Electromagnetic interactions are insensitive to charge conjugation,
therefore exactly the same result is expected for anti-hydrogen.
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a) Hydrogen-like sodium:
scaling is Z4, hence splitting (13.5× 10−6 × 114 = 0.197 eV.

b) muonic sodium: have m as well as Z dependance.

Consider a0mαc = h̄ ⇒ a0 ∝ 1/m

Hence overall, splitting is ∝ mZ4.

mµ = 207me,
hence splitting = 207× 0.197 = 41 eV.
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For neutral atom, the observed result is intermediate between hy-
drogen and the hydrogen-like ion. It is more than for hydrogen,
because when the electron penetrates the core it experiences a
greater electric field. It is less than for the ion, because the nu-
clear charge is nevertheless somewhat screened, so the electric field
is smaller than that in the ion.
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2000. 2. The term describes the interaction between the mag-
netic dipole moment of the nucleus and the magnetic field created
by the electrons at the nucleus:

H = −µ ·B
where
dipole moment µ ∝ I the spin of the nucleus

magnetic field B ∝ J the total angular momentum of the elec-
trons.
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Both the motion and the spin of the electrons give rise to B fields
proportional to l and s. However, internal interactions amongst
the electrons cause these to precess about J (since J is a constant
of the motion) and hence all components of B average to zero
except those along J.

Hence overall the form is (const) ×I · J
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1st order perturbation theory: energy shift ∆E = 〈H〉 = A 〈I · J〉.
Let F = I + J

F2 = (I + J)2 = I2 + J2 + 2I · J
⇒ I · J =

(F2 − I2 − J2)

2

⇒ ∆EF =
A

2
(F (F + 1)− I(I + 1)− J(J + 1))

since states are eigenstates of F 2, I2 and J2 (before the perturba-
tion acts).

Hence separation between one level and the next is

∆EF,F−1 = ∆EF −∆EF−1
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=
A

2
[(F (F + 1)− I(I + 1)− J(J + 1))

−((F − 1)(F )− I(I + 1)− J(J + 1))]

=
A

2

[
F 2 + F − F 2 + F

]

= AF

⇒ ∆EF,F−1

∆EF−1,F−2
=

AF

A(F − 1)
=

F

F − 1
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The structure is dominated by the 4d3 5s 5P term because the
valence electron is in an s state (while the other term is p). Its
wavefunction therefore is non-zero at the nucleus, and the mag-
netic dipole of this electron produces an especially large magnetic
field there (“Fermi contact interaction”).
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Ignore the upper level splitting. Then the 5 transitions imply 5
energy levels in lower state.
⇒ either I = 2 or J = 2 (in order to get 5 values of F ).

We have 5P so S = 2, L = 1 ⇒ J = 1, 2, or 3.

Notice the atomic weight 93 is odd ⇒ I is half-integer.

⇒ must be J = 2, and F is half-integer
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Must be I > 2, so 5/2 or 7/2 or 9/2, · · ·
Examine interval rule:

F

F − 1
= r

⇒ F = r(F − 1)

⇒ F (1− r) = −r

⇒ F =
r

r − 1

Diagram → gaps 42.0, 35.6, 29.1, 22.7
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r r/(r-1)
42/35.6 = 1.18 6.56

35.6/29.1 = 1.22 5.48
29.1/22.7 = 1.28 4.55

This looks like F = 6.5, 5.5, 4.5
(and so the other two values are 3.5, 2.5)

Therefore nuclear spin I = 4.5 = 9/2.
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To observe hyperfine structure, the emission lines from a discharge
lamp can be examined using a line filter in combination with a
Fabry-Perot etalon.

· · · diagram

The detector is in the focal plane of the lens. Each hyperfine
component gives its own set of interference fringes. The hyperfine
splittings can be measured by comparing them to the free spectral
range of the etalon.
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It will be convenient to cover the whole span of 129 m−1 comfort-
ably within a free spectral range of the etalon.

1

2nd
= 200 m−1

⇒ plate separation d ∼ 1

400
= 2.5 mm

This is a reasonable value.
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1999. 2.

The LS coupling scheme is a model of atomic structure based on
a hierarchy of interactions:

Hcentral field À Hresidual electrostatic À Hspin−orbit.

In the central field approximation each electron has a well-defined
orbital angular momentum l and spin s. The residual electrostatic
interaction then couples the l. Their total

L =
∑

i
li

is well-defined and so is the total spin

S =
∑

i
si

while the individual l and s precess about L and S.

The spin-orbit interaction then couples L and S so that they pre-
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cess slowly about their resultant J = L + S.

The scheme is appropriate when the spin-orbit interaction is small
compared to the other electrostatic interactions.
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Z=12 so 1s2 2s2 2p6 3s2 ground state.
Hence expect 3s3p, 3s4s, 3s3d.
We are told 3s4s below 3s3d.
Triplet for given configuration typically below the singlet.

→ diagram

Evidence: (1) the fine structure splitting in the 3s3p 3P term is
small compared to the separation of the triplet from the singlet of
each configuration.

(2) the 3s3p 3P0,1,2 levels follow the Landé interval rule closely
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1999. 2. Last part: “The 1s2s configuration in helium is split
into two levels, separated by 6422 cm−1. Assign quantum numbers
to these levels, and explain what gives rise to the difference in
energy. Why are both these levels metastable?”

1s2s in helium: levels are 3S1 and 1S0, i.e.
n1 = 1, l1 = 0, n2 = 2, l2 = 0,
S = 1, L = 0, J = 1
and S = 0, L = 0, J = 0

The energy difference is caused by the Coulomb repulsion of the
electrons. The state of the two electrons must be antisymmetric
w.r.t. exchange of the labels, since they are fermions. The so-
lutions can be written as a product of spatial and spin parts, so
there are two possibilities:
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either ψS(spatial) × χA(spin)
or ψA(spatial) × χS(spin)

where S,A signifies symmetric, antisymmetric

Now, the mean distance between the electrons is smaller in ψS(spatial)
so this state has more energy from Coulomb repulsion. This is the
singlet (S = 0) state, since the singlet spin state is antisymmetric.
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why metastable:

1s2s 3S1 has only the ground state 1s2 1S0 below it. It cannot
decay because of parity rule (∆l = ±1) and selection rules on L
(L = 0 ↔/ L = 0) and S (∆S = 0).

1s2s 1S0 cannot decay to the ground state because of parity and
selection rules on L and J
(J = 0 ↔/ J = 0)

It cannot decay to 1s2s 3S1 because of parity and selection rules
on L and S.
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2000. 4.

Physical origin of terms: · · ·
Approximations:
(1) neglect relativistic corrections, including spin-orbit effect
(2) neglect nuclear effects (finite volume, magnetic dipole moment
of the nucleus)
(3) neglect motion of nucleus (i.e. assume heavy nucleus)
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Electrons are identical fermions, and therefore their joint state
must have the property

ψ(1, 2) = −ψ(2, 1)

i.e. it merely changes sign when the labels are exchanged (Ex-
change Principle).

Any state whose spatial part is ψa,b = ψa(r1)ψb(r2) does not have
this property and so is not possible.

The state of the electrons can have the form
either ψS(spatial) × χA(spin)
or ψA(spatial) × χS(spin)

(both of these are antisymmetric overall).

χA is the singlet spin state (S = 0).
χS is the triplet group of spin states (S = 1).
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The 1s2 configuration has both electrons in the same spatial state,
so its spatial part must be symmetric w.r.t. exchange:

ψspatial = φ1s(r1)φ1s(r2)

Therefore it must be a singlet: 1S0.
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The 1s2s configuration has two possibilities:

ψS =
1√
2

(ψa,b + ψb,a)

ψA =
1√
2

(ψa,b − ψb,a)

To ensure overall antisymmetry, the spin state must be such that
the first is the singlet, the second is the triplet.

The first (ψS) has more energy because the electrons are on av-
erage closer together in ψS compared to ψA, so have more energy
from their Coulomb repulsion.

→ diagram

35



Helium: Z = 2
Oxygen: Z = 8 (since O6+ is helium-like)

Hydrogen-like ion has energy levels E =
−Z2ER

n2

So to ionize He+ requires 22ER = 54.4 eV.
So to ionize O7+ requires 82ER = 870 eV.

We can understand the results by using the idea of screening.
Each electron in the helium-like system experiences a net electric
field from the combination of the nucleus and the other electron.
Therefore to ionize the helium (-like) system requires less energy
than to ionize the hydrogen-like ion.
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The screening effect can be estimated by adjusting the nuclear
charge to Z − σ.

(2− σ)2ER = 25 eV

gives σ = 0.64 for He.

(8− σ)2ER = 740 eV

gives σ = 0.62 for O6+.

So both results are consistent with partial screening by a single
electron.
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2000. 3. Electric dipole selection rules:

1. total angular momentum:
J = 0 ↔/ J = 0
MJ = 0 ↔/ MJ = 0 when ∆J = 0
∆J = 0,±1
∆MJ = 0,±1

2. parity must change
⇒ ∆l = ±1

3. Configuration: only one electron jumps
4. when L and S are good quantum numbers:

∆S = 0,
∆L = 0,±1 and L = 0 ↔/ L = 0
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Justification:
In electric dipole radiation, the photon carries 1 unit of angular
momentum, and angular momentum is conserved. This explains
the selection rules on J and MJ .

The parity must change because the electric dipole operator ∑
i−eri

has odd parity, so only connects even parity states to odd parity
ones, and vice versa.
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1s2 2p 2P1/2 – 1s2 3d 2D5/2 disallowed (∆J = 2)

1s2 2s2p 1P1 – 1s2 2p3p 1P1 allowed
(comment: 2s → 3p)

1s2 2s2 1S0 – 1s2 2p2 3P1 disallowed:
2 electrons changed, no parity change, ∆S = 1
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alkali ⇒ S = 1/2.

4 “σ+/σ−” lines and 2 “π” lines
hence (diagram) J1 = 1/2, J2 = 3/2
(we are told J2 > J1)

L1 = 0 or 1.
L2 = 1 or 2.

Selection rules: as above, and
the π lines are ∆M = 0,
the σ+/σ− lines are ∆M = ±1.
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∆E = −〈µ ·B〉
= gJµBBMJ

where Bohr magneton µB = eh̄/2me.

Different L1, L2 will give different gJ hence different splittings and
associated Zeeman spectrum.

L2 = 2 and we know L1 = 0 or 1. Hence, to obey ∆L selection
rule, must have L1 = 1.
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S = 1/2, L = 2, J = 3/2 ⇒ g2 =
3× 15/4 + 3/4− 6

2× 15/4

=
3× 15 + 3− 24

30
= 4/5

S = 1/2, L = 1, J = 1/2 ⇒ g1 =
3× 3/4 + 3/4− 2

2× 3/4

=
1

3/2
= 2/3
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→ diagram.

MJ2 MJ1 relative position (g2MJ2 − g1MJ1)

3
2

1
2

3
2 · 4

5 − 1
2 · 2

3 = 6
5 − 1

3 ' 0.867

1
2

1
2

1
2 ·

(
4
5 − 2

3

)
= 2

3 − 1
3 ' 0.067

−1
2

1
2

1
2 ·

(−4
5 − 2

3

)
= −2

5 − 1
3 ' −0.73

1
2 −1

2

−1
2 −1

2 negative of the above

−3
2 −1

2
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OR: For convenience, use

gJµBBM = (15gJ)µBB(2M)/30,

and 15g2 = 12,

15g1 = 10.

2MJ2 2MJ1 relative position
3 1 3× 12− 1× 10 = 26
1 1 (12− 10)× 1 = 2
−1 1 (−12− 10) = −22
1 −1
−1 −1 negative of the above
−3 −1 → diagram
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1998. 3.

In the notation 1L and 3L, the superscript indicates the value of
2S + 1 where S is the total spin of the atom—in these examples
S = 0 and S = 1. The letter L indicates the orbital angular
momentum in spectroscopic notation: the letters S,P,D ... signify
L=1,2,3 ...

1s2s gives terms 1S and 3S.
1s2p gives terms 1P and 3P .

−→ diagram

Similarities: use screening concept, Zeff = approx 1 but slightly
larger, especially for low n and l

Differences:
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1. in helium energy depends on l as well as n (net potential is not
simply 1/r).
2. in helium each configuration has two terms (singlet and triplet)
with a splitting owing to the electrostatic repulsion between the
electrons.

To estimate: first obtain Zeff for 1s2p
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2002. 2. The quantum numbers L, S, J,MJ are associated with
the angular momentum operators for the electrons in the atom:

L̂ =
∑

i
l̂i = total orbital angular momentum

Ŝ =
∑

i
ŝi = total spin angular momentum

Ĵ = L̂ + Ŝ = total angular momentum

Ĵz = z-component of Ĵ

The eigenvalues of L̂2, Ŝ2, Ĵ2, and Ĵz are
L(L + 1)h̄2, S(S + 1)h̄2, J(J + 1)h̄2 and MJh̄ respectively.
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Electric dipole selection rules:

1. total angular momentum:
J = 0 ↔/ J = 0
MJ = 0 ↔/ MJ = 0 when ∆J = 0
∆J = 0,±1
∆MJ = 0,±1

2. parity must change
⇒ ∆l = ±1

3. Configuration: only one electron jumps
4. when L and S are good quantum numbers:

∆S = 0,
∆L = 0,±1 and L = 0 ↔/ L = 0
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Justification:
In electric dipole radiation, the photon carries 1 unit of angular
momentum, and angular momentum is conserved. This explains
the selection rules on J and MJ .

The parity must change because the electric dipole operator ∑
i−eri

has odd parity, so only connects even parity states to odd parity
ones, and vice versa.

The spherical harmonics Ylm have parity −1l, hence the parity
rule together with the angular momentum change by at most 1,
implies δl = ±1.

The electric dipole operator does not act in spin space, so ∆S = 0.

Its effect on L is limited by the same angular momentum conser-
vation considerations as for J .
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The electric dipole matrix element is a sum of terms, each involv-
ing the operator ri of a single electron:

∑

i
〈ψ2| − eri |ψ1〉 .

In the central field approximation the electrons move indepen-
dently, so have product wavefunctions ψ. If more than 1 electron
jumps, each term in the matrix element will be a product of a
non-zero part and a zero part owing to the orthogonality of the
single-electron wavefunctions.
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If J does not change, the only way to add 1 unit of angular momen-
tum from the photon, and still get the same J , is if the direction
of the vector J changes:

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

©©©©©©©©©©©©*

A
A
A
AU

J

J

1

This implies either its z component
must change, hence ∆MJ = ±1, or it is rotated in the x-y plane
(∆MJ = 0). However, for MJ = 0 there is no φ-dependence (eimφ)
in the wavefunction, so the latter case is not in fact a change in
the state, so does not change the angular momentum direction, so
is ruled out.
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gJ characterises the coupling between the magnetic dipole of the
atom and the applied magnetic field. The energy shift (in 1st
order perturbation theory) of a state MJ in level J is

∆E = 〈−µ ·B〉 = gJµBBMJ

where µB is the Bohr magneton.
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Problem given: let 2 be upper level, 1 be lower.
We have S2 = 1, L2 = 2, hence J2 = 1, 2 or 3.
To satisfy selection rules, must have S1 = 1, L1 = 1, 2 or 3, J1 =
integer.
12 components in the Zeeman spectrum suggests maybe J1 = 3/2?
But already ruled this out. Try J1 = J2 = 2: gives correct
number. No other value works ⇒ J1 = J2 = 2.

It remains to find L1.

g2 =
3× 6 + 2− 6

2× 6
=

14

12
= 7/6

g1 =
20− L(L + 1)

12
,

Try L = 1: g1 = 18/12 = 3/2 = 9/6
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g2 = 7/6, g1 = 9/6:

MJ2 MJ1 relative position
2 2 (7− 9)× 2 = −4
1 2 (7× 1− 9× 2) = −11
2 1 (7× 2− 9) = 5
1 1 −2
0 1 −9
1 0 7

etc. (symmetric pattern)
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Wrong pattern. Quickly rule out L1 = 2 (gives same gJ so lines
at zero).
Hence must be L1 = 3

(Check: g1 = (20− 12)/12 = 4/6

MJ2 MJ1 relative position
2 2 (7− 4)× 2 = 6
1 2 (7× 1− 4× 2) = −1
2 1 (7× 2− 4) = 10
1 1 3
0 1 −4
1 0 7 → correct. )
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(Spectrometer apparatus: see practical course.

Don’t forget to filter out other spectral lines.)
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2000. 1.

Apparatus: X-ray tube + crystal spectrograph (entrance slit, crys-
tal of known structure and spacing, photographic film)

Each wavelength scatters off the crystal at a different angle (Bragg
scattering).
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Spectrum: the continuous background is Bremsstrahlung, pro-
duced by rapid deceleration of the electrons as they hit and enter
the anode. The cut-off is when the all the energy is given to a
single photon, at hf = hc/λ = eV where V is the potential
difference between cathode and anode.

The sharp emission lines are characteristic of the element of which
the anode is made. A fast incoming electron knocks an atomic
electron out of an inner shell of the atom. The X rays are produced
when other electrons in higher shells of the atom “fall down” to
fill the hole. The lines come in series, associated with the lower
level of the set of transitions.
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L-shell absorption edge: raise electron from n = 2 to first empty
state.

Potassium: Z = 19: 1s2 2s2 2p6 3s2 3p6 4s,
i.e. n = 4
Rubidium: Z = 37:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s, i.e. n = 5

The energy change in the absorption can be written

E = ER



(Z − σL)2

22
− (Z − σ′)2

n2




Solve for σL:

(Z − σL)2

4
=

E

ER
+
∼ 1

n2

⇒ (Z − σL) = 2
√
E/ER + ∼ 1/n2
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⇒ σL = Z − 2
√
E/ER + ∼ 1/n2

potassium rubidium
Z=19 Z=37
n=4 n= 5
E=294 eV E=1840 eV

⇒ σL = 9.7 ⇒ σL = 13.7
Zeff = 9.3 Zeff = 23
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Comments:
The nuclear charge is screened by the atomic electrons. We should
expect contributions:

σL ' 2 from n = 1 electrons
+ ∼ 8/2 from n = 2 electrons
+ contribution from electrons in higher

shells, especially those in s states.

For rubidium there are a further 27 electrons, compared with 9
for potassium, so expect larger σL as observed.

(Could mention external screening.)
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Kα emission line is at

E = ER



(Z − σK)2

12
− (Z − σL)2

n2




with σK ' 2 to 10, and σL ' 6 to 20, both increasing slightly
with Z.

The wavelengths vary smoothly with Z because σK and σL don’t
change dramatically as Z increases. With each new period in the
periodic table a new s-state is introduced, which causes a slightly
larger than normal increase in σK and σL, but this is still a small
effect compared to (Z − σK)2.
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Rubidium: observe Kα at 13.4 keV.

(Z − σK)2 = E/ER + (Z − σL)2/4

⇒ σK = Z −
√
E/ER + (Z − σL)2/4

= 37−
√√√√√√
13400

13.6
+

(37− 13.7)2

4
= 3.5

Potassium: guess σK ' 2
⇒ Kα energy is E ' 3600 eV.

We can be confident that σL < 3.5 since potassium has fewer
electrons than rubidium.
Therefore E < 4110 eV.

(Also, it is very likely that σL > 1 so a lower bound is
E > 2970 eV.)
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2002. 3.

Electron screening:
Each electron in a multi-electron atom experiences a net electric
field from the nucleus and the other electrons. The charge dis-
tribution of the electrons is approximately spherically symmetric,
especially for the inner shells, so, using Gauss’ theorem, the net
electric field at radius r is the same as that due to a point charge
at the origin of charge Z − σ, where σ quantifies the degree to
which the negative electron charge thus ‘screens’ the positive nu-
clear charge.
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The absence of one electron can be regarded as a single ‘hole’
moving in this field. Hence we propose the formula for the energy
levels:

En,l =
hcR(Z − σn,l)

2

n2

(positive because the hole has positive charge).
From the form of the wavefunctions, we should expect σn,l to
decrease with n and l.
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Spectrometer: as before.

Reasoned estimate: in order to observe the complete X-ray line
spectrum, it must be possible to eject a K shell electron from the
atom. The required energy is E = hcR(34− σ1,0)

2.

Estimate σ1,0 ' 2, since only 1 other K-shell electron and the
other electrons do not contribute greatly to σ1,0. In any case the
E estimate is not sensitive to this.

Thus E ' 13.6× (32)2 ' 14 keV.
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Spectrum:
The high energies are of order of E, so are in the K series.
The fine structure decreases with n.
σn,l decreases with l.

→ diagram.

Notice

1.492− 1.486 = 0.006

12.496− 12.490 = 0.006

Using diagram, this must be the splitting of 3p.
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Z = 34 so 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4 , i.e. n = 4

The transition at 12.652 keV is to 4p, but this means the hole is
in the outer shell, i.e. the atom is just ionized, i.e. energy=0.
⇒ energy of 1s is 12.652 keV.

12.652− 11.182 = 1.47

12.652− 11.222 = 1.43

12.652− 12.490 = 0.162

12.652− 12.496 = 0.156

0.162 + 1.486 = 1.648 (= 0.156 + 1.492)

Approximations: central field model of the ion (hence n, l). Ignore
the fact that the ion might be left in an excited state of the valence
electrons (small energies, of order eV).
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Deducing σn,l:
We now know the energies, so use
E = ER(Z − σ)2/n2

⇒ Z − σ = n
√
E/ER ⇒ σ = Z − n

√
E/ER

There is an ambiguity in the question. I assume the σ for levels
of low n and l are required.
Hence

n l j σn,l

1 0 1/2 3.50
2 0 1/2 12.0
2 1 1/2 13.2
2 1 3/2 13.5

(The levels of least energy are 4s, 4p and the excited states of
valence electron, all these have σ ' 33).
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Comments: σ1,0 is small, because when the hole is in the ground
state the mean radius of the orbit is small, so is not well screened
from the nuclear charge. σ2,1 > σ2,0 because l states have larger
mean radius than s states. There are 2 electrons in a full K shell,
and 8 in a full L shell. The values ∼ 3.5 and ∼ 12 or 13 are
therefore roughly of the expected size, being larger owing to all
the other electrons in higher shells.

Note the fine structure splitting of 3p: this is from spin-orbit effect,
so not well modelled by a ‘screening’ argument which is based on
central field approximation.
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1998. 2.

Rate equations for population:

dN2

dt
= −A21N2 + B12ρN1 −B21ρN2

A21 = rate coefficient for spontaneous emission
B12 = rate coefficient for absorption
B21 = rate coefficient for stimulated emission

Consider a gas of atoms in thermal equilibrium with thermal ra-
diation at temperature T :

ρ =
8πhν3

c3

1

ehν/kBT − 1
dN2

dt
= 0 (thermal equil ⇒ steady state)
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⇒ N2(A21 + B21ρ) = B12ρN1

⇒ N2

N1
=

B12ρ

A21 + B21ρ
.

But
N2

N1
=

g2

g1
e−hν/kBT Boltzman distribution

⇒ g2

g1
e−hν/kBT =

B12/B21
A21
B21

1
ρ + 1

=
B12/B21

A21
B21

c3

8πhν3(ehν/kBT − 1) + 1

True for all T

⇒ A21

B21

c3

8πhν3
= 1,

g2

g1
=

B12

B21
.
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⇒ g2B21 = g1B12, A21 =
8πhν3

c3
B21

⇒ g2A21 =
8πhν3

c3
g1B12.

diagram · · ·
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dN3

dt
= S3 − A32N3

dN2

dt
= S2 + A32N3 − A21N2

dN1

dt
= A21N2 −X

st. state: S3 = A32N3 ⇒ N3 = S3/A32.

N2 =
S2 + A32N3

A21
=

S2 + S3

A21
.
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⇒ N3

N2
=

S3

A32
· A21

S2 + S3
=

S3

S2 + S3

A21

A32
,

N3 −N2 =
S3

A32
− S2 + S3

A21
=

A21S3 − A32(S2 + S3)

A32A21
.

So
N3

N2
> 1 when

S3

S2 + S3

A21

A32
> 1

⇒ S2

S3
<

A21

A32
− 1

If N3 > N2 get population inversion. In this case the stimulated
emission exceeds the absorption, so we get gain, i.e. coherent
amplification of the light, on the transition 3 → 2. This is how a
laser works.
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diagram · · ·
dN3

dt
= S3 − A32N3 + B23ρN2 −B32ρN3

dN2

dt
= S2 + A32N3 − A21N2 −B23ρN2 + B32ρN3

dN1

dt
= A21N2 −X

st. state: 0 = S3 − A32N3 + B23ρN2 −B32ρN3

0 = S2 + A32N3 − A21N2 −B23ρN2 + B32ρN3

add: 0 = S3 + S2 −N2A21

⇒ N2 =
S2 + S3

A21
.
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⇒ N3 =
S3 + B23ρ

(
S2+S3
A21

)

A32 + B32ρ
.

⇒ N3 −N2 =
S3 + B23ρ

(
S2+S3
A21

)

A32 + B32ρ
− S2 + S3

A21

=
S3A21 + B23ρ (S2 + S3)− (A32 + B32ρ)(S2 + S3)

A21(A32 + B32ρ)

Now g2 = g3 ⇒ B23 = B32

⇒ N3 −N2 =
S3A21 − A32(S2 + S3)

A21(A32 + B32ρ)
.

So factor
(N3 −N2)(with rho)

(N3 −N2)(without rho)
=

A32

A32 + B32ρ
.
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Evaluate:
1

1 + B32
A32

ρ

B32

A32
=

c3

8πhν3
= 7.49× 1012 m3/Js.

Flux per δf is Φ = 1014 m−2 s−1 Hz−1

Suppose flux passes through area A for time t :
ΦAt photons Hz−1

⇒ ΦAthν energy Hz−1

This energy fills a volume ctA

⇒ ρ =
ΦAthv

c tA
(energy Hz−1/volume)
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=
Φhν

c
= 1.326× 10−13 Jm−3 Hz−1

⇒ Factor =
1

1 + 7.49× 1012 × 1.326× 10−13

= 0.50
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2000. 5.

(a) Each atom in the gas has a velocity. The light observed along
a given direction z has its frequency f Doppler-shifted by

∆f = f
vz

c
,

vz = component of velocity along the line of sight. The distribu-
tion of velocities is Gaussian (from kinetic theory), with a standard
deviation δvz given approximately by

1

2
M(δv)2 ' 1

2
kBT, M = mass of atom

⇒ width ' 2δvz ' 2
√
kBT/M

Hence the shape of the spectral line is Gaussian, and line width

∆f ' f

c
2

√
kBT/M
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(Typical number could be 100’s of MHz, optical transition at room
temperature)

(b) Natural decay of a energy level gives it a finite lifetime τ .
Therefore an emitted wave must decay exponentially. Fourier
analysing this, we find a Lorenztian distribution of frequency com-
ponents, with full width at half maximum such that ∆ω = 1/τ ,
so

∆f =
1

2πτ

(c) Collisions between atoms interrupt the phase of the emitted
wave. Fourier analysis of such a wave again gives a Lorenztian dis-
tribution of frequency components. If τ is the mean time between
collisions then the FWHM is

∆f =
1

2πτ
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Potassium: Doppler: find FWHM:

e−(1/2)Mv2/kBT =
1

2

⇒ (1/2)Mv2

kBT
= ln 2

⇒ v =
√
2 ln 2kBT/M

⇒ ∆vFWHM = 2
√
2 ln 2kBT/M

⇒ ∆ν̃FWHM

ν̃
=

∆v

c

=
2

√
2 ln 2× 1.38× 10−23 × 300/39× 1.66e− 27

3× 108

= 1.99× 10−6.
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Decay rate = 1/τ = 3.7× 107 s−1

⇒ natural lifetime broadening ∆f =
1

2π
3.7× 107 = 5.89 MHz

f = c/(766 nm) = 3.914× 1014 s−1

⇒ ∆ν̃FWHM

ν̃
=

∆f

f
= 1.50× 10−8.
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Collision broadening:
mean time t between collisions:

v t σ n = 1

⇒ t =
1

vσn

σ ' π × (atomic diameter)2 ' π(10−10)2 = 3× 10−20 m2

PV = RT ⇒ P =
NRT

V N
= nkBT

⇒ n =
5× 104

kB × 300
= 1.21× 1025 m−3

v '
√
kBT/M = 253 ms−1
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⇒ t ' 3 ns

⇒ ∆f =
1

2πt
' 53 MHz

⇒ ∆ν̃

ν̃
= 1.4× 10−7
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