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Abstract

This note presents the main ideas concerning energy and energy flow in classical electromag-
netism, at 2nd year undergraduate level.

Abandon point charges all ye who enter here.
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1 Basic concepts

There are three fundamental concepts:

field energy density u =
1

2
(E ·D + B ·H) (1)

Poynting vector (field energy flux) N = E×H (2)

power density p = E · jc (3)

where (as usual)

D = ε0E + P, H =
1

µ0
B−M (4)

and (note well), jc in (3) is the conduction current, not the total current. The total current is

j = jc + ∇×M +
∂P

∂t
. (5)

The power density p is the rate at which energy is transferred from the fields to the free charges,
per unit volume. To derive this, observe that the work done per unit time on a charge q moving at
velocity v is f · v = q(E + v ×B) · v = qE · v and therefore the rate per unit volume, if there are n
such particles per unit volume, is nqE · v = E · jc by using jc = nqv.

I have begun with the above quantities because I think they offer the simplest route to thinking about
energy in electromagnetism. But there are some related quantities which are not the same as the
above, although they go by the same names. They are:

free field energy density u0 =
1

2
ε0(E2 + c2B2) (6)

Poynting-vector-like quantity N0 = ε0c
2E×B (7)

total power density p0 = E · j (8)

The difference between u and u0 is one thing we will seek to clarify in the following (they are the
same when P = M = 0). For the moment, simply note that u0 is energy associated just with the
fields E and B, whereas u includes energy associated with polarization and magnetization as well.
Polarization and magnetization are properties of matter, so u is not a property of the electromagnetic
fields alone. It is a property of fields and matter together. The name ‘field energy density’ remains
legitimate, if a little misleading, since one can apply the mathematical term ‘field’ to P and M, and
in consequence it is also applied to D and H.

The conservation of energy is expressed by

− ∂

∂t

∫
R
udτ =

∮
(R)

N · ds +

∫
R
E · jc dτ (9)
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Figure 1: Building up an assembly of charges by introducing the charges one by one.

where R is a region of space, (R) is the surface of the region, dτ is a volume element and ds is a
surface element. The left hand side of this equation is the rate of loss of field energy in the region.
The right hand side gives first the rate at which field energy is flowing out, and then the rate at which
energy is going to the particles. Clearly these are flows which reduce u, hence the minus sign on the
left. By using Gauss’s theorem we express the surface integral as a volume integral of ∇ ·N:∮

(R)

N · ds =

∫
R
∇ ·N dτ. (10)

Hence we obtain ∫
R

∂u

∂t
+ ∇ ·N + E · jc dτ = 0. (11)

(It is legitimate to bring the ∂/∂t inside the integral, because the integral is just a sum and the limits
of integration do not depend on t.) Now in general if an integral is zero it does not necessarily follow
that the integrand is zero. However, if the integral is zero for all regions of integration, as here, then
it must be that the integrand is zero. Therefore

Conservation of energy (continuity equation)

∂u

∂t
+ ∇ ·N + E · jc = 0. (12)

This is an important equation. It goes by the name continuity equation.

1.1 Static set of charges

Finally, another basic concept is the work required to assemble a static system of charges. To bring
the first charge no work is required: W1 = 0. To bring the second requires work W2 = q2V12 where
V12 is electric potential owing to 1, at the location of 2 (see Fig 1). To bring the third charge requires
W3 = q3V13 + q3V23. And so on:

Wi = qi

i−1∑
j=1

Vji. (13)
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Hence the total work is

W =
∑
i

Wi =
∑
i

i−1∑
j=1

qiVji. (14)

Now it is a property of the electric potential of point charges that Vji = Vij . Hence we can write

W =
1

2

∑
i

i−1∑
j=1

qi(Vji + Vij). (15)

Now suppose we set out all those Vij values in a table:

V11 V12 V13 · · · V1n
V21 V22 V23 · · · V2n

...
...

...
...

Vn1 Vn2 Vn3 · · · Vnn

(16)

The sum in (15) includes all the off-diagonal entries, and only those, so we can write it as:

W =
1

2

n∑
i=1

qi

 n∑
j=1,j 6=i

Vij

 . (17)

The quantity in the bracket here is the potential at the location of the i’th charge owing to all the
other charges once the assembly of all the charges has been completed. Hence we have

W =
1

2

∑
i

qiVi (18)

where Vi is the potential at the i’th charge in the completed assembly. Note the factor half! That
factor appears repeatedly in energy formulae in electromagnetism. Also note the usage of the phrase
‘potential at the i’th charge’. This refers to the potential at some location owing to all the other
charges. If you forget this, you will find yourself dealing with infinite quantities and you will get in a
muddle.

Going over now to a continuous distribution of charge, we put qi → ρdτ for charge density ρ, and
therefore

W =
1

2

∫
V ρ dτ (19)

This seems straightforward, but for completeness we ought to check that we correctly handled the
omission of the Vii parts from the integral. To do this one must first abandon point charges, replacing
them with small balls of charge of some finite radius and charge density. For such balls, as the radius
tends to zero, so does the charge, in such a way that infinite quantities are avoided. It all works out
fine but we shall omit these details here. (See box for further comments.)
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Finally, a bit of fun. For static problems we have (by definition of V ), E = −∇V and the first Maxwell
equation gives ρ = ∇ ·D. The combination V ρ therefore contains a factor whose derivative we know,
and a factor whose integral we know. With this in mind, we can perform a form of integration by
parts, as follows. First observe that

∇ · (VD) = (∇V ) ·D + V∇ ·D = −E ·D + V ρ. (20)

Therefore ∫
V ρ dτ =

∫
E ·D dτ +

∫
∇ · (VD) dτ

=

∫
E ·D dτ +

∫
(VD) · ds (21)

where we used Gauss’s theorem to convert a volume integral to a surface integral. Now we let the
region of integration be a huge sphere around the set of charges. In the limit as the radius of this
sphere tends to infinity, the dominant term in both V and D will be that owing to the total charge Q,
for which V goes as Q/r and D as Q/r2. If the total charge is zero then the fields will fall off quicker
than this. It follows that VD falls off at least as fast as 1/r3. Therefore∫

(VD) · ds = O(1/r)→ 0. (22)

(Note: the integral is over the spherical surface; in this integral r is constant and can be brought out
the front.) We thus obtain ∫

V ρ dτ =

∫
E ·D dτ (static case) (23)

You can now see that our work formula (19) is consistent with our field energy formula (1). (This
part of the discussion is limited to the static case because we employed E = −∇V which is not true
more generally.)

1.2 Simple examples

Let’s start with our old friends the idealized circuit elements: resistor, capacitor and inductor.

We begin with energy flow (Poynting vector). The electrical power supplied is P = V I. For a resistor
in the shape of a long cylinder of length d and radius r, V = Ed where E is the electric field along
the resistor, and the magnetic field is B = µ0I/2πr in loops around the surface. Hence

V I = Ed 2πrB/µ0 = (2πrd)EH. (25)

The quantity in the bracket is the area of the curved surface of the resistor, so we have that the energy
flux (power per unit area) agrees with the Poynting vector, (2). The direction of N in this example is
into the resistor. Field energy is flowing in, and it is being given up to the work required to push the
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Figure 2: Fields and energy flow. Left: a resistor, or a capacitor in which the charge is increasing.
Right: an inductor in which the current is increasing. Note: these diagrams show the fields in or very
near the device in question (resistor, capacitor, inductor). Near the ends and further away the field
lines change their directions, such that energy is conserved and flows towards the circuit element (or
away if the capacitor or inductor is discharging).
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current against the resistance of the material. (Inside the material this energy is quickly converted
into random vibrations; the energy eventually emerges via convection and heat conduction and radiant
heat; we have not attempted to model those processes even though they are largely electromagnetic
too.)

Now the capacitor. We treat a cylindrical parallel-plate capacitor with a small gap d and large radius
r. We have P = V I and V = Ed. In a static case there is no energy flow and no magnetic field. If
the capacitor is being charged, on the other hand, then the electric field is increasing and there is a
magnetic field in loops around. At the radius r the magnetic field is B = µ0I/2πr (to obtain this
one may use Ampère’s law applied to a surface which extends to the wire supplying the current, thus
avoiding the ∂E/∂t term, or one may use some other surface or method). Hence for the capacitor we
obtain (25) again.

Now the inductor. The magnetic field is H = nI where n is the number of turns per unit length and
I is the current. For a constant current there is no energy flow and no electric field. If the current
is changing, there is an electric field E in loops around, such that the net voltage (or e.m.f. if you
prefer) across the whole length of the wire is

V = N2πrE (26)

where N is the number of turns. Hence

V I = (N2πrE)(H/n) = (2πrd)EH (27)

where d is the length of the solenoid, and we have (25) once again.

In the case of the capacitor and the solenoid, the field energy flowing in or out goes to increase or
decrease the field energy density inside the device. For the capacitor we have capacitance C = εA/d
(where we write ε = ε0εr) with A = πr2 the area of the plates. To charge a capacitor from zero the
total work required is

W =

∫
V I dt =

∫
V dQ =

∫
CV dV =

1

2
CV 2. (28)

The volume is Ad so the energy density is

W

Ad
=

1

2

εA

d
(Ed)2

1

Ad
=

1

2
εE2 (29)

in agreement with (1).

To make a current flow in a solenoid, starting from zero current, the work required is

W =

∫
V I dt =

∫
LIdI =

1

2
LI2. (30)

The inductance is L = µN2A/d so the energy density is

W

Ad
=

1

2
µ
N2A

d

(
H

n

)2
1

Ad
=

1

2
µH2 (31)
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Figure 3: Adding a layer of thickness dr to a charged sphere. At the illustrated stage of construction,
the sphere has reached some radius r < R and it has a charge q = Qr3/R3. It will eventually grow to
size R, at which point the charge will arrive at the total Q.

in agreement with (1) once again. (Note, by employing the concepts of relative permittivity and rela-
tive permeability we have here assumed the simplest kind of dielectric material whose response is linear
and isotropic, meaning the polarization is along E and proportion to it, and the the magnetization is
along H and proportional to it.)

1.2.1 The charged sphere

The uniformly charged sphere is a very useful example for learning purposes. We shall treat a sphere
with no polarization (εr = 1) first, and then a sphere with polarization. In each case we shall calculate
the energy by two methods: work to bring the charges to together, and field energy.

1. A uniform charged sphere of non-polarized matter.
We suppose that the physical situation begins with an empty region of space, with, a very long way
away and surrounding it, all the charge which will eventually be brought in to make the sphere. We
calculate the work required to bring the charge together. At some stage of partial construction, the
situation is as shown in Fig. 3. The sphere has attained radius r and the charge in it is q = Qr3/R3

where R is the radius it will have when its total charge reaches Q. Therefore the work required to
bring in a new piece of charge dq is

dW =
q dq

4πε0r
=

Qr2

4πε0R3
dq (32)

where we used that the whole situation is spherically symmetric so the simple Coulomb formula for
the potential applies. With the arrival of charge dq, the radius grows in such a way as to keep the
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charge density ρ uniform. This is achieved if1

dq = 4πr2ρdr = 4πr2
Q

(4/3)πR3
dr = 3Q

r2

R3
dr. (33)

Hence we find

W =

∫
dW =

3Q2

4πε0R6

∫ R

0

r4 dr

=
3

5

Q2

4πε0R
(34)

Now let’s examine the field energy. Inside the sphere the elecric field is radially outwards (for positive
ρ) and equal to the amount given by the Coulomb law for the charge q. Hence

E(r<R) =
q

4πε0r2
=

Q

4πε0R3
r (35)

The total field energy inside the sphere is therefore

Uinside =

∫
1

2
ε0E

2 dτ =
1

2
ε0

(
Q

4πε0R3

)2 ∫ R

0

r24πr2 dr =
1

10

Q2

4πε0R
. (36)

This does not match the work required to assemble the sphere. Why not? It is because the work
required to assemble the sphere has also produced all the other field energy: the energy which is
situated outside the sphere. It must do this, because the work is supplied, at each stage of the
process, at exactly the location where the force acts. The force acts on the charge at each radius r
on its entire journey from infinity, pushing energy into the field at each place. The field outside the
completed sphere is E = Q/(4πε0r

2) (Coulomb law again, by using the Gauss theorem) so the field
energy outside the sphere is

Uoutside =

∫
1

2
ε0E

2 dτ =
1

2
ε0

(
Q

4πε0

)2 ∫ ∞
R

1

r4
4πr2 dr =

1

2

Q2

4πε0R
. (37)

The total Uinside + Uoutside now agrees with W from (34).

2. A uniformly charged dielectric sphere.
Now let’s suppose our charged sphere is made of polarizable matter. We assume the simple case
D = ε0εrE. The calculation of the field energy goes just as before, except that now we should use
E ·D = εE2 in (36) so

Uinside =
1

10

Q2

4πε0εrR
. (38)

The field outside is the same as before, so the result for the total field energy is

U = Uinside + Uoutside =
1

2

Q2

4πε0R

(
1

5εr
+ 1

)
. (39)

1To get this you could equally well just differentiate q = Qr3/R3.
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This is the correct result. The next part of the discussion is considerably more subtle and should be
skipped (to the end of this section) on first reading, but you will need it later on if you ever want to
understand polarization in other contexts, such as in plasma physics.

The work required to bring the charges to the sphere is calculated exactly as before, so we shall obtain
(34) again, with the result that now we have a discrepancy between W and the field energy. What
happened? Has the edifice of classical field theory crumbled? No: the problem is that we have not
yet accounted for all the charge distribution in the sphere. The problem is hiding in the difference
between j and jc, and the difference between ρf (the free charge density) and ρtot. The field energy
calculation is correct and complete, but we have not yet finished the work calculation. We need to
account for all the little dipoles associated with polarization. To do this, we can imagine first supplying
the free charge density, which requires the work we have calculated, leading to (34). Next, we imagine
bringing in, from a long way away, lots of little electric dipoles, and planting them in the sphere in
just the right way so as to form the polarization of the final situation. We do this using dipoles all
of fixed magnitude (the varying polarization can be produced by a varying density of such dipoles).
It is important to treat fixed magnitude in the following to as to avoid the complication of tracking
energy when a dipole is stretched.

As each dipole is brought in, we can arrange it so that the dipole is always oriented perpendicular to
the local electric field, so there is no force on it and no work is done. Eventually the dipole arrives at
its final location. Once there, we have to rotate it to alignment with the local field. In so doing the
potential energy of the dipole in the field changes from zero to

−p ·E (40)

where p is the dipole moment. Once the dipole is aligned with the field, therefore, we receive back an
amount of energy p ·E, in which E refers to the field before it has been adjusted by the newly arrived
dipole. By arguing thus for the whole sphere we find that the work required to place the dipoles is
negative and given by

Wpol = −1

2

∫
E1 ·Pdτ (41)

where E1 refers to the field of the unpolarized sphere, and the factor 1/2 is to avoid double-counting,
just as in the argument leading to (19). Using now P = ε0E2(εr − 1) where E2 is the final field (the
one in the completed, polarized, sphere) we have

Wpol = −1

2
ε0

∫
E1 ·E2(εr − 1) dτ

= −1

2
ε0

∫
E2

1(1− 1/εr) dτ (42)

The sum W +Wpol now agrees with the field energy (39).

The above amounts to a rigorous proof of (41) but for added comfort, let’s derive it another way.
Consider the field energy in the case where there is no magnetic field:

u =
1

2
E ·D =

1

2
E · (ε0E + P) . (43)
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To find the work required to introduce polarization, we want to compare this with what the energy
would be without polarization, being careful to note that this will change the electric field too. So
the comparison we want is

∆u =
1

2
E2 · (ε0E2 + P)− 1

2
ε0E

2
1 (44)

where E1 = εrE2. We find

∆u =
1

2
ε0E2 ·E2(1− ε2r) +

1

2
E2 ·P. (45)

Now P = ε0(εr − 1)E2, so the first term can be written in terms of P:

∆u = −1

2
E2 ·P(1 + εr) +

1

2
E2 ·P = −εr

2
E2 ·P = −1

2
E1 ·P, (46)

in agreement with (41). It might seem as if the second calculation assumed the answer because it em-
ployed the field energy formulae. But those formulae are themselves derivable by energy conservation,
starting from the work required to move a charge against a field (Poynting’s argument), so we have
not argued in a circle.

2 Electromagnetic waves

Coming now to electromagnetic waves, we shall restrict to the case where D is parallel to E and H is
parallel to B. This describes isotropic dielectrics, conductors and plasmas, for example.

It will be useful to adopt complex notation, where we can write a plane wave, for example, in the form

E = E0e
i(kz−ωt), B = B0e

i(kz−ωt) (47)

D = D0e
i(kz−ωt), H = H0e

i(kz−ωt) (48)

where all the constants may be complex numbers, with the exception of E0 and ω. By allowing the
wave amplitudes B0, D0,H0 to be possibly complex we can account for phase differences between the
oscillations (and we choose the origin of t such that E0 is real). By allowing k to be complex we can
account for a wider set of wave motions, including decaying waves such as occur in conducting media.

It is understood, in this notation, that the physical fields are given by the real part of the complex
quantities. So for example if k is real then

Ephys = Re (E) = E0 cos(kz − ωt) (49)

and if k = α+ iβ then

Ephys = Re (E) = E0e
−βz cos(αz − ωt). (50)
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Figure 4: A travelling wave in free space. The main diagram shows the fields at some instant of time.
The inset shows u at two successive instants of time (the later curve is dashed). The inset arrows
show the direction of N (its amplitude matches u).

For plane waves of every kind, the third Maxwell equation gives

k×E0 = ωB0. (51)

Therefore

1. The magnetic waves are transverse (i.e. B is perpendicular to k).

2. For a travelling wave, B oscillates in phase with E if and only if k is real.

3. The amplitudes are related by

B0 =
ω

|k|
E0 sin θ (52)

where θ is the angle between E and k. This angle is 900 in ordinary circumstances.

For wave motion, the quantities u and N are usually neither uniform in space nor constant in time.
They may oscillate at the wave frequency or at twice the wave frequency, for example. But when
averaged over time the result may be independent of both time and position. Here are some examples.
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1. Travelling waves in empty space

E = E0 cos(kz − ωt) (53)

B = B0 cos(kz − sinωt) (54)

k is real (55)

ω = kc (56)

E0 = cB0 (57)

u =
1

2
ε0(E2

0 + c2B2
0) cos2(kz − ωt)

= ε0E
2
0 cos2(kz − ωt) (58)

〈u〉 =
1

2
ε0E

2
0 (59)

N = ε0cE
2
0 cos2(kz − ωt)ẑ (60)

〈N〉 =
1

2
ε0cE

2
0 = 〈u〉c ẑ (61)

The notation 〈· · ·〉 here indicates the time average. Notice that for these waves the electric and
magnetic fields contribute equally to the energy. Also, the final result (〈N〉 = 〈u〉c) is easily
derived by considering the energy in a cylinder of length ct and cross-section A: this energy is
〈u〉ctA and it is transported across a plane in a time t, so the flux is 〈u〉c.

2. Standing waves in empty space

E = E0 2 sin(kz) sin(ωt) (62)

B = B0 2 cos(kz) cos(ωt) (63)

E0 = cB0 (64)

u = 2ε0E
2
0

(
sin2(kz) sin2(ωt) + cos2(kz) cos2(ωt)

)
(65)

〈u〉 = ε0E
2
0 (66)

N = ε0cE
2
0 sin(2kz) sin(2ωt)ẑ (67)

〈N〉 = 0. (68)

We have defined the amplitudes such that these standing waves are the sum of two travelling
waves, each of which has amplitude E0. In a standing wave the electric and magnetic contribu-
tions are 90◦ out of phase, and the energy oscillates between them. Nodes of E are located at
anti-nodes of B. The Poynting vector indicates the movement of the energy to and fro between
the nodes of E and nodes of B.

For waves in a conductor and a plasma, see the note Electromagnetic waves in plasmas and conductors.

Notice that in the above we were careful to use real-number quantities when calculating u and N.
One should be careful with the complex notation when dealing with quantities that are not linear in
the fields, because for two complex numbers z1 and z2,

Re (z1z2) 6= Re (z1) Re (z2) . (69)
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Figure 5: A standing wave in free space. The main diagram shows the extreme values of the fields.
They oscillate in place, such that the result alternates between purely electric and purely magnetic.
The inset shows u at two successive instants of time (the later curve is dashed). The inset arrows
indicate the direction of N (it oscillates over time as well as position). The animation shows the fields
evolving over time.

14



It follows that if E and B are complex valued, then

u =
1

2
(Re (E) · Re (D) + Re (B) · Re (H)) , (70)

N = Re (E)× Re (H) (71)

but

u 6= Re

(
1

2
(E ·D + B ·H)

)
(72)

N 6= Re (E×H) . (73)

It follows that one should not write N = E×H if in fact E and H are complex.

Having made this cautionary observation, we can also note that, fortunately, there is a useful simplifi-
cation if we just want to know the time-averaged quantities. If z1(t) and z2(t) are complex quantities
of the form

z1 = A1e
i(−ωt+φ1), z2 = A2e

i(−ωt+φ2) (74)

where A1, A2, φ1, φ2 are all real and independent of t, then

Re (z1) Re (z2) = A1A2 cos(ωt+ φ1) cos(ωt+ φ2)

= A1A2 cos(θ) cos(θ + ∆φ) (75)

where θ = ωt+ φ1 and ∆φ = φ2 − φ1. Therefore

Re (z1) Re (z2) = A1A2 cos(θ) [cos(θ) cos(∆φ)− sin(θ) sin(∆φ)]

= A1A2

[
cos2(θ) cos(∆φ)− (1/2) sin(2θ) sin(∆φ)

]
(76)

Taking now a time average, one finds 〈cos2(θ)〉 = 1/2 and 〈sin(2θ)〉 = 0. Hence

〈Re (z1) Re (z2)〉 =
1

2
A1A2 cos(∆φ). (77)

Now observe that this same quantity can also be obtained from

z∗1z2 = A1A2e
i(φ2−φ1) (78)

by taking half real part. The overall conclusion is, for quantities oscillating as in (74),

〈Re (z1) Re (z2)〉 =
1

2
Re (z∗1z2) . (79)

This purely mathematical observation can be useful in simplifying the algebra when we want to find
the time average of the energy density or the Poynting vector. For example, for E = E0e

i(kz−ωt) and
H = H0e

ikz−ωt, with E0 and H0 both real, we find immediately 〈N〉 = (1/2)E0 ×H0.
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3 Derivation of u and N: Poynting’s theorem

The conservation of energy is a remarkable feature of classical electromagnetism. When the Maxwell
equations were first discovered it was not self-evident whether or not the theory would respect energy
conservation. That it does (and momentum conservation too) is a remarkable outcome. It means
there is an intimate connection between the field equations and the Lorentz force equation: for a
given force, not all field equations would respect energy conservation. With modern methods we can
connect this to a Lagrangian density for both charge and fields together which is independent of time
and position. We shall not explore that treatment here however. In the present discussion we shall
take the Maxwell and Lorentz force equations as a starting point, and see what we can discover.

The following derivation is owing to John Henry Poynting (1852-1914).

We consider the following set of equations:

∇ ·D = ρf , ∇ ·B = 0 (80)

∇×E = −∂B
∂t
, ∇×H = jc +

∂D

∂t
(81)

p = E · jc (82)

where the last equation is that part of the power density (rate of doing work per unit volume) which
delivers energy to the motion of free charges. We want to find expressions for quantities u and N, such
that the energy conservation equation (continuity equation) (12) shall be satisfied. In the derivation
we do not claim to know anything else about u and N in the first instance, but we suspect they can
be connected to the fields in some way. The starting point of the derivation is to note that the term
E · jc in (12) involves only quantities that appear in the Maxwell equations. We can find out about it
by dotting E onto the fourth Maxwell equation, giving

E · (∇×H) = E · jc + E · ∂D
∂t

(83)

Next, employ the vector identity

∇ · (E×H) = H · (∇×E)−E · (∇×H) (84)

(This is valid for any pair of vector fields, but we shall be applying it to E and H in particular). By
employing this in (83) we find

H · (∇×E)−∇ · (E×H) = E · jc + E · ∂D
∂t

(85)

The term involving ∇×E can now be replaced by employing the third Maxwell equation, and we have

E · ∂D
∂t

+ H · ∂B
∂t

+ ∇ · (E×H) + E · jc = 0. (86)

This is looking a lot like the continuity equation! We will have that equation if we assign

N = E×H (87)
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as long as we can also find a u such that

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
. (88)

The simplest case is when D = εE and B = µH (for time-independent ε, µ) for then one has

∂

∂t
(E ·D) = ε

∂

∂t
(E ·E) = 2εE · ∂E

∂t
= 2E · ∂D

∂t
(89)

and similarly,

∂

∂t
(B ·H) = 2H · ∂B

∂t
. (90)

After substituting these results into (88) one finds that the expression we need is

u =
1

2
(E ·D + B ·H) . (91)

Thus we have derived expressions for energy density and energy flux in electromagnetic fields which
give the conservation of energy.

There are two further aspects to clear up. First, we only presented the derivation in the simple case
where D = εE and B = µH. However it is not hard to generalize further. We write

P = ε0χeE, M = χmH (92)

where χe is the electric susceptibility and χm is the magnetic susceptibility. We can allow that these
quantities are tensors, and we can allow that they may depend on the fields (a non-linear response)
as long as they remain time-independent. Under this restriction we shall find P · Ė = Ṗ · E, and
M · Ḣ = Ṁ ·H, which leads to D · Ė = Ḋ ·E, and B · Ḣ = Ḃ ·H, which is all we require in order to
obtain (91).

Finally, a further detail. The solution we have found for u and N is not unique. We can add to u any
time-independent function and still get the same ∂u/∂t, and we can add to N the curl of any scalar
function and still get the same ∇ ·N. It follows that energy conservation alone will not pin down the
expressions uniquely. If the energy density had a further contribution then it will make a contribution
to the rest energy and therefore the rest mass of a system with internal fields. This will influence the
inertia and the gravitational effects and therefore could in principle be observed. No such effects have
been found and it is believed that our formulae for u and N are the right ones.

4 Relationship between u and u0

The reader should note that in the above derivation of Poynting’s theorem the power density term
includes only the work done on free charges. The E · jc term does not include the work done to change
the distribution of polarization and magnetization, because this work is taken care of elsewhere in the
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equations: it has been incorporated into N via the H field, and into u via both D and H. This can
be quite a puzzling idea when you first meet it!

To get some more insight, let’s consider now the following set of equations:

∇ ·E = ρtot/ε0, ∇ ·B = 0 (93)

∇×E = −∂B
∂t
, ∇×B = µ0j + ε0µ0

∂E

∂t
(94)

p0 = E · j (95)

These are called Maxwell’s equations, and (80)–(82) are also called Maxwell’s equations. Why the
same name? It is because the two sets are entirely equivalent to one another. D, H, ρ and jc are
defined expressly so as to bring about this equivalence.

If we now set out from (93)–(95) and apply Poynting’s argument, we shall find

∂u0
∂t

+ ∇ ·N0 + E · j = 0. (96)

This expresses conservation of energy just as (12) does, and it is just as general as (12). It can be
used to describe fields in dielectric media, for example. The two results are, indeed, equivalent: each
can be derived from the other (as you may like to show as an exercise). But there is a difference in
the way we read the equations. In (12) the power density term is E · jc whereas in (96) the power
density term is E · j. The first refers to energy used up in pushing just the free charge; the second
refers to energy used up in pushing the total charge (including the part owing to time-variation of P
and spatial variation of M). This idea is sufficiently confusing that one may wonder why D and H
were ever introduced. However, if we simply trust the mathematics then D and H prove to be very
useful.

One can elucidate the difference between the two approaches by observing that

u = u0 +
1

2
(E ·P−B ·M) (97)

N = N0 −E×M (98)

p = p0 + E · (∇×M) + E · ∂P
∂t

(99)

An example of (97) occurred in our treatment of the charged dielectric sphere, eqns (44)–(46).
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The myth of the point charge.
In electromagnetism we often find it useful to talk about physical entities called ‘point
charges’ whose charge is non-zero, mass is finite, and whose physical extension (diameter)
is zero. No such entities exist in fact, and indeed they do not make sense even from a
theoretical point of view! So what is going on?

First, on the physical non-existence. The closest approximation to the notional ‘point
charge’ is the electron. These are entities described by quantum theory, in which there
is a fixed amount of rest-mass and charge, and which can carry energy and momentum
in the usual way. However no electron has ever been localized in an infinitesimally small
region of space, because if it were then the position uncertainty would tend to zero, with
the consequence that the momentum uncertainty tends to infinity, which implies that the
kinetic energy would also increase without limit, and the situation is impossible. (What
happens in fact when one tightly confines electrons is that multiple electron-positron pairs
are produced). It follows that, to get a good physical intuition about electrons in ordinary
circumstances you should think of them as spread out a little. A diameter of order a few fm
(10−15 m) gives a reasonable picture. This is the diameter where the field energy is of the
order of the rest mass energy if we model the electron as a little ball of smeared-out charge.

So much for the physical myth. What about the mathematical possibility? Is there anything
wrong with introducing mathematical point charges into our discussion of electromagnetism?
The answer is that for discussions of motion in response to a force, the notion of a point-like
charge is often ok, but there are cases where one must be more careful. The difficulties arise
when energy and radiation reaction are considered. The total field energy of a point charge
is infinite (see (34)) so really it is hopeless dealing with point charges (of finite charge) if we
want to be careful about energy and momentum. To the rescue comes the following idea:
let the charge tend to zero as the volume does. What this means is, for small entities adopt
a model where the charge density is everywhere finite. A sphere of charge density ρ and
radius r has charge

q =
4

3
πr3ρ (24)

The point particle limit r → 0 is now also a zero charge limit, q → 0, and furthermore
the field energy tends to zero too. If a given discussion is not concerned with the actual
magnitude of the charge then one can choose some value of r small compared to all other
lengths under discussion, and then the charge will be small but non-zero, and one can apply
formulae such as f = q(E + v ×B) without encountering non-physical predictions.
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