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We want to find the values of pi which maximise

S = −kB
∑
i

pi ln pi (1)

subject to the constraints∑
i

piϵi = E,
∑
i

pi = 1. (2)

Introduce

f ≡

(∑
i

ϵipi

)
− E (3)

g ≡

(∑
i

pi

)
− 1. (4)

Also introduce Lagrange multipliers λ, , α and form

y = S + λf + αg. (5)

This has a stationary value when

∂y

∂pj
= 0 (6)

where for each j the variables held constant in the partial
derivative are all the other pi ̸=j . Therefore

−kB ln pj − kBpj
1

pj
+ λϵj + α = 0 (7)

which gives

kB ln pj = λϵj + (α− kB) (8)

hence

pj = Aeλϵj/kB (9)

where A = exp(α/kB − 1). This is the Boltzmann distri-
bution.

There remain two further steps. First we define β =
−λ/kB and so

Boltzmann distribution

pj = Ae−βϵj (10)

and we define Z =
∑

i exp(−βϵi). Then the constraint
related to g and α is satisfied when

pi =
e−βϵi

Z
. (11)

Finally, we want to know the value of β. One can show
that if two systems can exchange energy without a change
in their sets of energy levels (hence they are exchanging
heat not work) then the entropy of the pair is maximised
when they have the same β; this suggests that β is related
to temperature. It is not hard to convince oneself that it
must be an inverse relationship.

The complete analysis of β is achieved by leaving it as β
in the equations obtaining formulae relating U to Z and
β, and then F . Eventually we find out that

∂S

∂U
= kBβ (12)

where in the partial derivative all the energy levels ϵi
are held constant. But thermodynamic temperature T
is equal to ∂U/∂S. Hence we deduce that

β =
1

kBT
. (13)

Comments

It is remarkable how the powerful result (10) emerges so
quickly from a few simple statements. I think this method
of derivation is conceptually one of the most straightfor-
ward. In any derivation one has to start by carefully get-
ting one’s head around precisely what the symbols mean
and what argument is being employed; in the above I think
that process is easier than in other approaches.
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1 A logical fallacy

I once had to mark the examination papers for an ex-
amination in thermal physics at the University of Oxford.
One of the questions asked the student to derive the Boltz-
mann distribution. Almost the entire cohort gave a faulty
derivation, and it was the same fault for all of them. This
alerted me to the fact that this was not just a failure in
their learning but also a failure in our teaching.

I will now present this faulty argument, in order first to re-
fute it, and then to correct it. The argument can be found
in a number of textbooks and other resources. Sometimes
it is presented correctly, sometimes not. Beware!

The argument considers a reservoir with a large number of
microstates Ω(E) which is a function of the energy E of the
reservoir. We suppose this reservoir exchanges energy with
our small system whose energy is ϵ. So in order to conserve
energy, when the system has energy ϵ the reservoir has
energy E − ϵ. The probability of this state of affairs is
therefore

p(ϵ) ∝ Ω(E − ϵ)× 1 (14)

where the 1 signifies the one state consistent with the en-
ergy ϵ of the system.

Now, for ϵ ≪ E, by using the Taylor expansion we can
always write

lnΩ(E − ϵ) = lnΩ(E)− ϵ
d lnΩ

dE
+ . . . (15)

= lnΩ(E)− βϵ+ . . . (16)

where

β ≡ d lnΩ

dE
(17)

(evaluated at reservoir energy E). This β is a property of
the reservoir. In the limit where the further terms in the
Taylor expansion are negligible, (16) gives

Ω(E − ϵ) = Ω(E)e−βϵ (18)

and therefore, by employing this in (14), we have

p(ϵ) ∝ e−βϵ. (19)

So we have the Boltzmann distribution. Or do we? As I
warned you, this argument is spurious as it stands. To be
fair, it is not completely spurious, but it is incomplete, and
without further statements to justify the approximation
of dropping the higher order terms it is almost completely
useless.

Here is why.

What really happened in the above argument is that we
took a function of Ω, linearized that function by forming
a Taylor series expansion to low order, and then claimed
the result to be accurate. But if this were valid then we
could equally well pick some other function, say tanΩ, and
linearize that, and then we shall find

p(ϵ) ∝ arctan(A− αϵ) (20)

for some constants A and α which are properties of the
reservoir. (The reader is encouraged to try it.) By this
kind of ‘reasoning’ one can ‘derive’ that p(ϵ) is pretty much
any function you like.

What is really going is that one finds that p(ϵ) can be
written to first order approximation in terms of almost
any analytic function, but this says almost nothing about
what function p(ϵ) is really. That information is hiding
in the behaviour of all the higher-order terms that were
neglected when we took a first order approximation.

I want to underline the importance of this point. Consid-
eration of the higher-order terms here is not just a tidying-
up exercise or a kind of afterthought which is not really
central to the argument. No: it is almost the entire argu-
ment, because until we have done it we can claim only that
our formula for p(ϵ) is valid to first order in ϵ, and nothing
more. When we see (19) it is very tempting to think that
our work is done and we have derived the Boltzmann dis-
tribution. That would be to commit an elementary fallacy
of logic. It would be like the following ‘argument’:

� Major premise. For any integer x, if x is a multiple
of 4 then x is a multiple of 3.

� Minor premise. 12 is a multiple of 4.

� Conclusion: 12 is a multiple of 3.

The concluding statement here is a true statement, but the
argument is entirely faulty because the major premise is
wrong. The mere fact that the conclusion of an argument
is correct does not in itself validate the argument.

The derivation presented above is not a derivation of the
Boltzmann distribution. It is a derivation of the statement

p ∝ e−βϵ+O(ϵ2). (21)

With all this in mind, we will now present a correct deriva-
tion of the Boltzmann distribution. We begin as before,
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with (14). Then we obtain (16) as before, except that we
write the next term explicitly:

lnΩ(E − ϵ) = lnΩ(E)− βϵ+
ϵ2

2

dβ

dE
+ . . . (22)

Note also that by using Ω = S/kB, where S is the entropy
of the reservoir, one finds β = 1/kBT . Now

dβ

dE
=

−1

kBT 2

∂T

∂E
=

−1

kBT 2C
(23)

where C is the heat capacity of the reservoir. The condi-
tion that this second-order term shall be negligible com-
pared to the first-order term is

ϵ2

2kBT 2C
≪ βϵ (24)

which is the requirement

C ≫ 2ϵ

T
. (25)

Since we are considering just a single system state at
energy ϵ, the quantity on the right here is of order kB,
whereas the quantity on the left is of order NRkB where
NR is the number of particles in the reservoir. By taking
the size of the reservoir to infinity, we can arrange that
the second order term shall vanish completely.

One then needs to look at terms of higher order still. One
finds that a sufficient condition for all of them to be negli-
gible is that the reservoir should be large, and with a heat
capacity that is not a strong function of energy. In the
limit of an infinite reservoir one may then conclude that
(19) is exact.

Exercise. To get a really thorough grasp of the above
reasoning, it is instructive to see what happens when we
don’t take the logarithm of Ω, but investigate a Taylor
series expansion of Ω itself. Then we have

Ω(E − ϵ) = Ω(E)− ϵ
dΩ

dE
+

ϵ2

2

d2Ω

dE2
+ . . . (26)

(i) Using thermodynamic reasoning, show that dΩ/dE =
βΩ.
(ii) Show that the second-order term is

ϵ2

2

(
− Ω

kBT 2C
+ β2Ω

)
and hence that, in the limit C → ∞,

p ∝ 1− βϵ+
1

2
(βϵ)2 +O(ϵ3) (27)

(iii) Extend the argument to all orders and thus derive
(10).
(This exercise is not an efficient way to derive the Boltz-
mann distribution; it is an exercise in how one must treat
a Taylor series if one is aiming to derive an exact result.)
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