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We discuss basic properties of a gas of fermions at low temperature. We shall get some intuition about
what the particles are doing by examining the Fermi-Dirac distribution function. We shall find the
energy of the gas, and the pressure at zero temperature, finding that it is surprisingly high (not zero
as one might guess). We shall also estimate the heat capacity at low temperature, and paramagnetic
properties for electrons.

1 Fermi energy

Choosing the zero of energy. The physics of a gas at low temperature depends on the gaps between
the energy levels, but not on the value of the ground state energy itself. This is illustrated by the fact
that the energy levels ϵi do not appear on their own in the partition function, but in company with the
chemical potential, in the term β(µ− ϵi). If we shift the zero of energy, both µ and ϵ0 will move and
Zi is unaffected. It is customary, and convenient, to choose as zero energy the single-particle ground
state energy. Thus if single-particle state number 1 is the ground state (which is the convention we
shall adopt, so that the occupation numbers are n1, n2, · · · ) then ϵ1 = 0.

The ground state energy of the entire gas (of many fermions) is not 0 because multiple fermions cannot
all occupy the single-particle ground state.

Now consider the Fermi-Dirac distribution function, plotted in Fig. 1 for four example temperatures.
At T = 0 the prediction is that states of low energy, ϵ < µ, are fully occupied (⟨n⟩ = 1) and states of
energy above µ have zero occupation (⟨n⟩ = 0). Now µ is itself a function of temperature, but since
its value at T = 0 has this special significance in the distribution, we give it a name: it is called the
Fermi energy:

ϵF ≡ µ(T = 0). (1)

In the case of a gas in a box we can calculate the Fermi energy as follows. We recall the idea of states
of motion characterised by wave vectors k, with one state per region of size (2π/L)d in k-space, when
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Figure 1: The Fermi-Dirac distribution function at 4 example temperatures. We plot the mean
occupation of a state of energy ϵ, as a function of ϵ/ϵF where ϵF is the Fermi energy (see text). Full
curve: T = 0; gray dashed: kBT = 0.1 ϵF; red dash-dot: kBT = 0.25 ϵF; blue dots: kBT = ϵF. In order
to plot the function at any given T , one must allow for the fact that µ falls below ϵF as T increases
from zero (see Fig. 3). One can locate µ on the graph of ⟨n(ϵ)⟩ by observing that ⟨n⟩ = 0.5 when
ϵ = µ.
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Figure 2: Obtaining the Fermi k-vector, in 3,2 and 1 dimensions. kF is the Fermi wave-vector when the
number of states in the sphere, circle, rectangle, respectively, after being multiplied by the spin-state
factor (2s+ 1), is equal to the number of particles, N .
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Density of states for free particles in a box (without spin)

g(ϵ) =
L

2πh̄
(2m)

1/2
ϵ−1/2 1d (5)

g(ϵ) =
Am

2πh̄2 2d (6)

g(ϵ) =
V

4π2h̄3 (2m)3/2ϵ1/2 3d (7)

The above can also be presented as follows:

dimensions D q
1 L(2m)1/2 /(2πh̄) −1/2

g(ϵ) = Dϵq 2 A(2m) / (4πh̄2) 0

3 V (2m)3/2/(4π2h̄3) 1/2

(8)

In the case of spin-half particles these values of D must be multiplied by (2s+ 1) = 2 to get
the total density of states.

the gas is in a d-dimensional box of side L (see Fig. 2), and we have adopted periodic boundary
conditions. We note that at zero temperature all states of energy up to ϵF are occupied, and none
above that. Writing ϵF = (h̄kF)

2/2m we deduce that all states up to wave-vector size kF are occupied,
where kF is to be obtained. In 3 dimensions the occupied states fill a sphere of radius kF and there
must be N of them, so we find

(2s+ 1)
(4/3)πk3F
(2π/L)3

= N (2)

where s is the spin of the particles making up the gas (for fermions we are usually concerned with
s = 1/2). Similar calculations in 2d and 1d give

(2s+ 1)
πk2F

(2π/L)2
= N 2d

(2s+ 1)
2kF

(2π/L)
= N 1d (3)

and therefore, for spin s = 1/2, the three cases give

k3F =
N

V
3π2, k2F =

N

A
2π, kF =

N

L

π

2
, (3d, 2d, 1d.) (4)

From these results ϵF can be found immediately, using ϵF = (h̄kF)
2/2m.

It will be useful in the following to observe that the Fermi energy can also be found via the density
of states as a function of energy. We use the same basic idea, that the occupation numbers must sum
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to N : ∫ ∞

0

g(ϵ)n̄(ϵ)dϵ = N (9)

where g(ϵ) is the density of states function, we have approximated the sum by an integral and we
introduced the shorthand n̄ ≡ ⟨n⟩. This formula is valid at any temperature as long as a large number
of states is involved. In the special case of zero temperature we have that n̄ is 1 for low energy and 0
for high energy (as noted above) so we find∫ ϵF

0

g(ϵ)dϵ = N. (10)

The density of states typically has a simple power-law dependence on energy,

g(ϵ) = Dϵq (11)

where D depends on the volume or area of the gas, and q is a constant (see eqn (8)). For a three-
dimensional gas of non-relativistic particles, q = 1/2. By performing the integral one finds

ϵF = [(q + 1)N/D]
1/(q+1)

(12)

For spin-half particles of mass m in a box of volume V , one has D = (2m)3/2V/(2π2h̄3) and then

ϵF =
h̄2

2m

(
3π2n

)2/3
where n = N/V (13)

which agrees with (4).

2 Energy, pressure, heat capacity

Once we have learned the value of ϵF (either by calculation or by deducing it from experimental
observations) we can also find the total energy of the gas at zero temperaure:

U =

∫ ϵF

0

ϵg(ϵ)dϵ =
D

q + 2
ϵq+2
F , (14)

where we used (11) for convenience. Similarly,

N =

∫ ϵF

0

dϵ =
D

q + 1
ϵq+1
F (15)

so

U

N
=

q + 1

q + 2
ϵF. (16)
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Note that this way of expressing the result is convenient because we don’t need to worry about the
expression for D: we only need to know q. We find that at zero temperature the mean energy per
particle is of the order of the Fermi energy. This is quite a lot of energy, in that it is infinitely larger
than kBT , and well above the energy of the lowest-lying single-particle states.

We shall consider small but non-zero temperatures in section 2.3.

An important example of a Fermi gas at low temperature (where by low we mean kBT ≪ ϵF) is the
set of conduction electrons in an ordinary metal. These electrons move remarkable freely, even in the
presence of the ions and the other electrons making up the metal, for largely quantum-mechanical
reasons. If the ions form a regular lattice then the wave-like nature of electrons permits them to
propagate long distances (of order one centimetre) without scattering off the lattice. The positive
charge of the ions also shields the electrons from one another, and the Pauli Exclusion Principle
further reduces their scattering, because only scattering into unoccupied states of motion is possible.
For such a gas the number density is high—about 1000 times higher than an ordinary gas at standard
temperature and pressure—and the particles have low mass. Consequently the Fermi energy is high,
about 7 eV for copper. The Fermi temperature ϵF/kB is then about 80000K so at room temperature
the free electrons in copper are very nearly all in the lowest available motional states. Such a gas is
said to be ‘highly degenerate’.

Further examples of a degenerate Fermi gas (to good approximation) occur in astrophysics, in the be-
haviour of white dwarfs and neutron stars, and in ultra-low-temperature experimental atomic physics.

2.1 Pressure

We can obtain the pressure of a gas (at fixed N) by using dU = TdS− pdV which gives

p = − ∂U

∂V

∣∣∣∣
S

. (17)

At temperatures above zero this formula is not convenient because one needs an expression for U
in terms of entropy and volume in order to evaluate it. However at absolute zero temperature the
entropy stays fixed (at zero) when the temperature stays fixed (at zero), so to find the pressure we
just need to differentiate (16) with respect to volume. One finds

p = −q + 1

q + 2
N

dϵF
dV

. (18)

For the 3-dimensional gas, q = 1/2 and ϵF ∝ V −2/3 so dϵF/dV = −(2/3)ϵF/V and one finds

p =
2

5

N

V
ϵF. (19)

For copper at room temperature we have N/V = 8.5 × 1028 m−3 and ϵF ≃ 7 eV, and one finds
p ≃ 3.8× 1010 Pa, which is about 380000 atmospheres! The bulk modulus of copper is approximately
1.4× 1011 Pa. We deduce that the electron pressure makes a non-negligible contribution to this.
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The pressure in a Fermi gas at low temperature is called degeneracy pressure. It arises because the
particles cannot all go into the ground state so they have to occupy higher states, and the energies of
those states rise when the volume decreases. This pressure is very important in the interior of stars
such as white dwarfs and neutron stars.

Two other ways of writing (19) are worth noting:

pV = N(2/5)ϵF (20)

which reminds us of the ideal gas equation of state, except that on the right is (2/5)ϵF instead of kBT .
Also,

p = (2/5)n ϵF (21)

which reminds us that pressure is proportional to energy density.

2.2 Physical intuition

When we study gasses at low temperature, we find it useful to focus in the first instance on the
energy eigenstates of the quantum entities (atoms or electrons or molecules), and these states are very
wave-like. But one can also think of the system in more particle-like terms. For, we don’t have to
assume each particle is in an energy eigenstate at any given time. Rather, each particle may be in
a superposition made up of a group of states close in energy to one another. Among the possible
superpositions are those in which the wavefunction, as a function of position, has the form of a wave
packet, which is a function having a localised peak of some width ∆x, and a spread of momentum
values ∆p, satisfying Heisenberg’s uncertainty principle ∆x∆p ≥ h̄/2. In this picture, therefore,
the quantum entities are quite particle-like and we can picture them as moving about the container,
colliding with the walls, and so on. This gives a good insight into the degeneracy pressure, for example.

2.3 Heat capacity

So far our discussion of the Fermi gas has been entirely concerned with the situation at T = 0. We
shall now explore briefly what happens for 0 < T ≪ TF where TF is the Fermi temperature defined
by TF ≡ ϵF/kB. Nothing in particular happens at the Fermi temperature, but when the temperature
is of this order the Fermi-Dirac distribution function has changed substantially from its T = 0 shape
(see Fig. 1).

The effect of a small increase in temperature above zero can be seen by comparing the curves shown
in Fig. 1. Much of the distribution is unaffected, but the part of the distribution within about kBT
of the Fermi energy changes, such that the particles in this region are moved to energies about kBT
more than they had at T = 0. It follows that the energy of the gas increases from its value at T = 0
by

∆U ≃ (g(ϵF)kBT )(kBT ) (22)
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Figure 3: Behaviour of the chemical potential as a function of temperature, for fermions in 3d. ϵF
is the Fermi energy and TF ≡ ϵF/kB. µ = 0 at T ≃ 0.9887TF. (The precise value is 4(3

√
π(2 −√

2)ζ(3/2))−2/3TF.)

where the first factor gives the number of particles affected, and the second gives their energy gain
per particle. Hence we find ∆U ≃ g(ϵF)k

2
BT

2 and therefore the constant-volume heat capacity is

CV ≃ 2g(ϵF)k
2
BT. (23)

Using g(ϵ) = Dϵq and (15) we have

g(ϵF) = DϵqF =
(q + 1)N

ϵF
. (24)

Hence for the three-dimensional gas (where q = 1/2) we obtain

CV ≃ 3NkBT/TF. (25)

A more accurate calculation has to account for the fact that the chemical potential is itself a function
of temperature (Figure 3 and eqn (43)),

µ ≃ ϵF
(
1− (π2/12)(T/TF)

2 + · · ·
)
. (26)

After performing an integral over the distribution function one finds

CV ≃ (π2/2)NkBT/TF. (27)

Notice the presence of the ‘Fermi factor’ (T/TF) in these expressions. The intuition is that physical
effects which involve exciting particles to higher energy can only involve the particles whose energies
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are within about kBT of the Fermi energy. The particles with energy lower than that cannot be
excited by thermal effects because the states above them are full: the excitation is ‘blocked’; particles
with energy more than a few kBT above ϵF also don’t contribute much because there are hardly any
of them.

For a metal at room temperature this heat capacity is small compared to the one associated with
vibrations of the lattice (which is of order 3NkB). At low temperature, on the other hand, it can
be the dominant contribution. At low temperature the lattice contribution is proportional to T 3

so the total heat capacity (the sum of the electron and lattice contributions) is predicted to have a
temperature-dependence of the form

CV = γT + αT 3 (28)

where γ and α are constants specific to each metal. For this reason the experimental data is often
presented as a plot of CV /T vs T 2; one finds then a straight line whose intercept gives the electron
contribution.

2.4 A more precise estimate: Sommerfeld expansion

In this section we obtain the formulae which were quoted without derivation in the previous section.
This could be omitted on first reading, or for an introductory treatment.

When calculating properties such as internal energy at low temperature, the expression to be calculated
often takes the form

I =

∫ ∞

0

ϕ(ϵ)f(ϵ)dϵ (29)

where f(ϵ) = 1/(exp(β(ϵ − µ) + 1) is the Fermi-Dirac distribution function. For example one would
take ϕ(ϵ) = ϵg(ϵ) in order to calculate the internal energy. At any given temperature it is useful to
write the integral I in the form ∫ ∞

0

ϕ(ϵ) [f0(ϵ) + f(ϵ)− f0(ϵ)] dϵ (30)

where f0(ϵ) is the function

f0 =

{
1 ϵ < µ
0 ϵ ≥ µ

(31)

(c.f. Fig. 4). This f0 is quite like the Fermi-Dirac distribution at absolute zero, but not exactly like
it because µ ̸= ϵF when the temperature is non-zero. We now introduce the notation

∆f(ϵ) ≡ f − f0 =

{
f(ϵ)− 1 ϵ < µ
f(ϵ) ϵ ≥ µ

(32)
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f(ϵ)

ϵ

= +

µµϵF

µ

Figure 4: Showing how the distribution function can be expressed, at any given µ, as the sum of a
step function and a function which is symmetric (odd) about ϵ = µ. The step is at µ, where the
distribution function has the value 1/2. The decomposition is exact; µ is not equal to ϵF (except at
absolute zero).

Hence we have

I =

∫ µ

0

ϕ(ϵ)dϵ+

∫ ∞

0

ϕ(ϵ)∆f(ϵ)dϵ (33)

= I0 +

∫ µ

ϵF

ϕ(ϵ)dϵ+
1

β

∫ ∞

−βµ

ϕ

(
x

β
+ µ

)
∆f

(
x

β
+ µ

)
dx (34)

where

I0 =

∫ ϵF

0

ϕ(ϵ)dϵ (35)

and we introduced the change of variable x = β(ϵ− µ) in the final integral.

So far no approximation has been made: eqn (34) will yield I (as defined by (29)) precisely. Now we
introduce the following approximations:

1. Allow the lower limit −βµ on the final integral to go to −∞

2. Taylor-expand the function ϕ about ϵ = µ

(these are exact at zero temperature). The second approximation is motivated by the fact that ∆f is
concentrated at energies close to µ (c.f. Fig. 4). The Taylor expansion of ϕ is

ϕ(ϵ) ≃ ϕ(µ) + (ϵ− µ)ϕ′ +
(ϵ− µ)2

2
ϕ′′ + . . . (36)

where the derivatives are to be evaluated at ϵ = µ. Now observe that the function ∆f is exactly an
odd function about the point ϵ = µ, since

f(µ+ δ) = 1− f(µ− δ) (37)

9



(which the reader should verify). It follows that the even terms of the Taylor expansion of ϕ will not
contribute to the final integral in (34), and the linear term gives

ϕ′

β2
2

∫ ∞

0

x

e2 + 1
dx =

π2

6

ϕ′

β2
. (38)

By substituting this into (34), and using∫ µ

ϵF

ϕ(ϵ)dϵ = (µ− ϵF)ϕ(µ) +O
(
(µ− ϵF)

2
)

(39)

we have

Sommerfeld expansion

I ≃ I0 + (µ− ϵF)ϕ+
π2

6
(kBT )

2 dϕ

dϵ
(40)

where I0 is the value of the relevant quantity at absolute zero, and ϕ and ϕ′ should be evaluated at µ.

The above method will adopt ϕ = g when when applied to the particle number, and ϕ = ϵg when
applied to the internal energy. One thus obtains:

N = N0 + (µ− ϵF) g(µ) +
π2

6
(kBT )

2 dg

dϵ
(41)

U = U0 + (µ− ϵF)µg(µ) +
π2

6
(kBT )

2 d

dϵ
(ϵg). (42)

Using N = N0, the first result yields

µ = ϵF − π2

6
(kBT )

2 1

g

dg

dϵ
, (43)

which, for the case of a gas in a box in three dimensions, gives (26). By substituting this into (42) we
then obtain

U = U0 +
π2

6
(kBT )

2g(µ) (44)

which, applied to a gas in a box in three dimensions, yields (27).

By writing the expressions in terms of g, we have ensured that all the equations in this section apply
to a Fermi gas in a box of any number of dimensions, and also of any kind of potential energy as
a function of position. All one needs is the density of states. By using integrals we have adopted
a continuous approximation to the density of states. This is a good approximation when the Fermi
energy is large compared to the energy gap, which is the case when N is large.
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3 Degeneracy pressure in stars

The electron density in the core of the sun is 6.4× 1031 m−3 and the temperature is 16 million kelvin.
Using (13) we find the Fermi energy is 583 eV. Therefore the temperature is about 2.3 times ϵF/kB.
This shows that the plasma in the solar core can be treated as a classical gas to first approximation,
but it would only require a modest drop in temperature (at given density) to cause the electrons to
enter the low-temperature regime where degeneracy pressure is important.

Stars such as the Sun eventually exhaust their nuclear fuel and as a result the temperature falls, and
the pressure with it, so the star begins to collapse to a smaller size than it had when hot. The pressure
will then build up again owing to the higher density as the star shrinks. The collapse will be halted
if the pressure rises sufficiently to balance the gravitational forces. Let us estimate the condition for
this to occur.

With a view to getting the right order of magnitude, we treat the star as a sphere of uniform density.
Then the total gravitational binding energy is

Egrav = −3

5

GM2

R
(45)

where M,R are the mass and radius of the star. For T ≪ TF the total kinetic energy of the electrons
is given by (16):

U =
3

5
ϵFN =

3

5

h̄2

2m

(
3π2N

(4/3)πR3

)2/3

N. (46)

Hence the total energy has the form

E = Egrav + U = −A

R
+

B

R2
(47)

where all the constants have been bundled into A and B. For a given mass, the minimum total energy
is then obtained when

R =
2B

A
=

h̄2

8mm2
pG

(9π)
2/3

m1/3
p M−1/3 (48)

where mp is the mass of a proton and we took N = M/2mp which is a good estimate if the star is
composed mostly of elements such as helium, carbon and oxygen whose atomic weight is twice their
atomic number (the number of electrons being equal to the number of protons in a neutral plasma).
Notice that the radius falls as the mass increases, and consequently the density is proportional to
M2. For one solar mass we find R ≃ 7000 km (similar to that of the Earth) and the density is one
tonne per cm3. (We have become accustomed to such numbers but when they were first inferred from
astronomical evidence it was doubted that such a state of matter could exist.)

A star which is supported in this way by electron degeneracy pressure, with little or no nuclear fusion,
is called a white dwarf. Such a configuration is the end-point of the evolution of many stars; indeed
97% of those in the Milky Way galaxy are thought to end this way.
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A white dwarf of one solar mass has ϵF ≃ 0.2MeV, which is about two fifths of the electron rest
energy, which means the electrons have speeds equal to a non-negligible fraction of the speed of light.
To describe a somewhat more dense star we shall require, therefore, a relativistic treatment. The
density of states in k-space remains the same, so we have gk = k2V/π2 and kF = (3π2n)1/3 as before,
but the relation between energy and momentum is now E2 = m2c4 + p2c2 = m2c4 + (h̄kc)2, leading
to

g(E) =
V E

π2(h̄c)3

√
E2 −m2c4 ≃ V E2

π2(h̄c)3
(49)

EF = mc2
(
1 + (h̄/mc)(3π2n)2/3

)1/2

≃ h̄c(3π2n)1/3, (50)

where in each case the approximate version gives the ultra-relativistic limit. In that limit the Fermi
energy now scales as 1/R instead of 1/R2 and consequently the total kinetic energy scales with R in
the same way as the gravitational potential energy. In place of (47) we have

E =
B −A

R
+O(R) (51)

where A = (3/5)GM2 as before, and now

B =
3

4
EFN =

3

4
h̄c

(
9π

4

)1/3 (
M

2mp

)4/3

. (52)

When B > A the star can find a minimum-energy state at some R where the R and 1/R terms
balance one another. When B < A, on the other hand, there is no equilibrium point and the star
shrinks without limit—or until some other process not accounted-for in the above calculation takes
hold. The stability condition B > A places an upper limit on the mass. For a more massive star,
electron degeneracy pressure is not sufficient to prevent gravitational collapse. In our rough model
this limit is given by

M =
3
√
125π

64

(
h̄c

G

)3/2
1

m2
p

≃ M⊙. (53)

A calculation bringing in a model of the density and pressure distribution in hydrostatic equilibrium
leads to 1.4M⊙. This is known as the Chandrasekhar limit.

Stars of mass exceeding the Chandresakhar limit may undergo a process leading to a supernova
explosion, or they may shrink to a neutron star or to a black hole. The neutron star is a star
supported largely by degeneracy pressure once again, but now from neutrons rather than electrons.
A calculation similar to the above is little changed, except that now N ≃ M/mp so a factor 2−4/3

is omitted from B and consequently the limiting mass increases by a factor 4. A more thorough
calculation gives a value called the Tolman–Oppenheimer–Volkoff limit which is around 2 to 3M⊙.
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|↓⟩, ϵ = −µBB

|↑⟩, ϵ = µBB

Figure 5: The two spin states available to a spin-half particle, and their energies in the case of an
electron in a magnetic field. At lower energy the magnetic dipole aligns with the field and therefore
the spin state is anti-aligned with the field. The circles represent illustrative occupation probabilities
in thermal equilibrium for an isolated electron.

4 Free electron paramagnetism

When a magnetic field is applied to a material which is non-magnetic in the absence of an applied
field, the material will typically acquire a magnetic moment. There are two main mechanisms whereby
this occurs: the material may be composed of a large number of small magnetic dipoles (either
single particles or small domains) which will tend to line up with one another under the influence of
the applied field. This results in a magnetization in the direction of the applied field and is called
paramagnetism. But there is always a competing process, associated with the response of moving
charges to an applied field, and if this results in magnetization in the opposite direction to the applied
field then it is called diamagnetism.

In the case of free electrons, both processes are relevant. We shall calculate the paramagnetic contri-
bution and then quote the diamagnetic contribution.

Each electron carries an intrinsic magnetic dipole moment of size and direction equal to

m = −gsµBŝ (54)

where gs ≃ 2.002 and ŝ is the electron spin operator in dimensionless units (it is the intrinsic angular
momentum divided by h̄) and µB is the standard atomic unit of magnetic dipole moment, called the
Bohr magneton:

µB =
eh̄

2m
. (55)

This is not to be confused with chemical energy! Under the influence of an applied magnetic field, the
hamiltonian describing the interaction between the dipole and the field is

H = −m ·B (56)

and since there are two spin states (called spin-up and spin-down) having sz = ±1/2, respectively,
there are two eigenstates of energy, with energies ∓µBB (where we took gs = 2 for simplicity); see
Fig. 5.

13
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g(ϵ)⟨n⟩

↓ ↑

energy

2µBB

Figure 6: In the presence of a magnetic field the energy levels of free electrons are shifted, those of
spin up to higher energy, those of spin down to lower. At zero temperature the states with energy
below the Fermi energy are occupied. Compared to the situation at zero field, the states indicated by
the curved arrow switch orientation.

If we were dealing with distinguishable particles we could now consider each electron separately. By
invoking the Boltzmann distribution one would find the probabilities to be spin-up and spin-down are
in the ratio p+/p− = exp(−2βµBB). Then, after using also p+ + p− = 1 one finds the mean magnetic
dipole moment per electron is

⟨m⟩ = µB ((+1)p− + (−1)p+) = µB tanh(βµBB) (57)

and therefore the total dipole moment is

mtot = NµB tanh(βµBB). (58)

For temperatures large compared to µBB this predicts that the electrons all line up with the field,
giving a total magnetic dipole moment of NµB which is large for N of the order of Avogadro’s number:
the field produced by such a total dipole is of order one tesla.

Now let’s consider the highly degenerate case. We will first consider the limit as T → 0, and then
consider finite temperature. A gas of free electrons (such as in a metal, where we neglect electron
interactions) at low temperature has the Fermi-Dirac distribution. In the presence of a magnetic field
the energies available to the electrons are given by the sum of their kinetic and magnetic energy. This
leads to two distributions, one for the spin-up states, one for the spin-down:

⟨n↑⟩ =
1

eβ(ϵ+µBB−µ) + 1

⟨n↓⟩ =
1

eβ(ϵ−µBB−µ) + 1
. (59)

Here we have adopted a notation where ϵ signifies just the kinetic energy, so at each ϵ there are two
quantum states, one of energy ϵ + µBB and the other of energy ϵ − µBB. Note that there is just
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one chemical potential µ describing the whole system, and one β = 1/kBT . A good insight into the
situation is to be had by plotting the above two functions on a single diagram, having first multiplied
by the density of motional states g(ϵ) = Dϵ1/2. This is shown in Fig. 6. This diagram is somewhat like
Fig. 1 but differs in two respects: we have chosen to plot g(ϵ)⟨n⟩, not ⟨n⟩ alone, and we have swapped
the horizontal and vertical axes. Now energy is shown in the vertical direction on the diagram, and a
nice feature is that now the area bounded by the curves on the diagram is proportional to the number
of quantum states up to the given energy. The Fermi energy is that energy below which there are
N states altogether. At zero temperature the occupied states are those below the Fermi energy. In
the presence of a magnetic field the distributions shift in energy, as shown, with the result that some
electrons switch spin-state from up to down in order to occupy the lower-energy states. For low B field
the number switching is (1/2)g(ϵF)µBB, (the half is needed because we have divided the distribution
into two parts), resulting in a total dipole moment for the whole set of electrons

mtot = g(ϵF)µ
2
BB. (60)

We thus find that the magnetization is only owing to those electrons within about µB of the Fermi
energy, which is a small fraction of the total. The magnetization is very much smaller than that
predicted by (58) and is almost independent of temperature, since (60) remains a good approximation
for T ≪ ϵF /kB.

So far we discussed paramagnetic effects. The quantum theory of the coupling of a moving charge
to a magnetic field leads to a further contribution to the energy. That effect is diamagnetic and of a
size one third of the paramagnetic effect discussed above, so the overall magnetization is two-thirds
of that predicted by (60).
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