
1 Notes and Directions on Dirac Notation

A. M. Steane, Exeter College, Oxford University

1.1 Introduction

These pages are intended to help you get a feel for the mathematics behind
Quantum Mechanics. The text books will guide you through all the details.
All I will do here is show the similarity between the mathematics of vectors
and the mathematics of kets (or ‘state vectors’). The ket can be regarded as
a generalisation of the concept of a vector.

1.2 Vectors, Bases and Components

A vector is a mathematical quantity. It may be written conveniently by writing
the symbol for it in bold type, for example,

a, b, r.

1.2.1

In a three-dimensional ‘vector space’, you can write any vector in terms of just
three other vectors, multiplied by certain scalars - for example

a = αp+ βq+ γr,

a = axi+ ayj+ azk.

1.2.2

Let’s choose to write every vector we come across in terms of three particular
vectors p, q, and r. For example,

a = αp+ βq+ γr

b = α′p+ β′q+ γ′r

This idea is sufficiently useful that we give it a name: we say that the choice {
p, q, r } is a particular ‘basis’, and the numbers α, β, γ are the ‘components’
of a in this basis.

Now consider the vector obtained by adding a and b:

(a+ b) = (α + α′)p+ (β + β′)q+ (γ + γ′) r.

Thus, to get the components of (a+ b), you just add the components of a to
those of b.

The basis is a set of vectors.
The components are simply numbers, ie scalars.
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1.2.3

A useful mathematical quantity is the ‘dot product’ of two vectors. It is written
a.b. Note two things: if a and b both have unit length, then a.b expresses,
roughly speaking, the degree to which they are pointing in the same direction.
Also, a.b may be obtained from the components of a and b:

a.b = αα′ + ββ′ + γγ′.

This works as long as the basis vectors are orthonormal.
The dot product is a scalar, not a vector. Finally, note that if the basis

vectors are orthonormal, then you can obtain each of the components of a
vector by taking the dot product with the relevant basis vector:

a.p = α

a.q = β

a.r = γ

This yields the important result

a = (a.p)p+ (a.q)q+ (a.r) r.

1.2.4

If you choose a different basis, the components of any given vector will change.
However, the value of a.b is independant of the basis.
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1.3 Kets, Bases and Wavefunctions

1.3.1

A ket is a mathematical quantity. It may be written conveniently by surround-
ing the symbol for it by a vertical line and an angle bracket, for example,

|a⟩ , |b⟩ , |c⟩ .

1.3.2

In an n-dimensional ‘Hilbert space’, you can write any ket in terms of just n
other kets, multiplied by certain scalars - for example, in 3 dimensions,

|a⟩ = α |p⟩+ β |q⟩+ γ |r⟩ ,
|a⟩ = ax |i⟩+ ay |j⟩+ az |k⟩ .

1.3.3

Let’s choose to write every ket we come across in terms of three particular kets
|p⟩, |q⟩, and |r⟩. For example,

|a⟩ = α |p⟩+ β |q⟩+ γ |r⟩
|b⟩ = α′ |p⟩+ β′ |q⟩+ γ′ |r⟩

This idea is sufficiently useful that we give it a name: we say that the choice
{ |p⟩, |q⟩, |r⟩ } is a particular ‘basis’, and the numbers α, β, γ are the ‘com-
ponents’ of |a⟩ in this basis. These components are more usually referred to
in quantum mechanics as ‘amplitudes’, for a reason we will see below. If the
Hilbert space has an infinite number of dimensions, we get an infinite set of
components or amplitudes. Such a set is called a wavefunction. This will be
explained more fully below.

Now consider the ket obtained by adding |a⟩ and |b⟩:

(|a⟩+ |b⟩) = (α + α′) |p⟩+ (β + β′) |q⟩+ (γ + γ′) |r⟩ .

Thus, to get the components of (|a⟩+ |b⟩), you just add the components of |a⟩
to those of |b⟩.

The basis is a set of kets.
The components or amplitudes are simply complex numbers, ie scalars.
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1.3.4

A useful mathematical quantity is the ‘dot product’ of two kets (it can also
referred to as an overlap integral). It is written ⟨b|a⟩. Note two things: if
|a⟩ and |b⟩ both have unit length, then ⟨b|a⟩ expresses, roughly speaking, the
degree to which |a⟩ is the same ket as |b⟩. Also, ⟨b|a⟩ may be obtained from
the components of |a⟩ and |b⟩:

⟨b|a⟩ = (α′ ⟨p|+ β′ ⟨q|+ γ′ ⟨r|) (α |p⟩+ β |q⟩+ γ |r⟩)
= α′α+ β′β + γ′γ

This result is obtained as long as the basis kets are orthonormal, that is, if
things like ⟨p|q⟩ = 0 while things like ⟨p|p⟩ = 1.

The dot product is a scalar, not a vector. Finally, note that if the basis
kets are orthonormal, then you can obtain each of the components of a ket by
taking the dot product with the relevant basis ket:

⟨p|a⟩ = α

⟨q|a⟩ = β

⟨r|a⟩ = γ

This yields the important result

|a⟩ = |p⟩ ⟨p|a⟩+ |q⟩ ⟨q|a⟩+ |r⟩ ⟨r|a⟩

or, more generally, if the kets |n⟩ form a complete orthonormal set, then for
any ket |ψ⟩,

|ψ⟩ =
∑
n

|n⟩ ⟨n|ψ⟩ .

1.3.5

If you choose a different basis, the components of any given vector will change.
However, the value of ⟨b|a⟩ is independant of the basis.

1.4 Amplitudes and Quantum Mechanics

1.4.1

Why do we call things like ⟨b|a⟩ amplitudes? Here is why. First, let’s think
about useful choices of basis. This is like deciding how to define your axes
when working with vectors. If we choose to work with a set of basis kets, it
is only really useful to do so with a complete, orthonormal set. That is, we
want to have enough kets in our basis so that we can, by adding them together
in the right proportions, make up any ket whatsoever (completeness). Also,
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we want the basis kets to be orthonormal (ie ⟨j|i⟩ = δij where |i⟩ and |j⟩ are
basis kets) so that the equations in the previous section work out ok. Now,
it so happens that it is easy to find such sets: any group of kets which are
the eigenkets of some Hermitian operator will do. That is, suppose we have
a Hermitian operator Q. Then there are various kets |q⟩ which satisfy the
equation

Q |q⟩ = q |q⟩

The set of solutions to such an equation forms an orthonormal set of kets. (Note
that we are following the common practice that when we have an eigenket of
an operator, we use the relevant eigenvalue as a label inside the ket symbol.)
Now, the Magic Law of Quantum Mechanics states that

1. The state of a system is represented by a ket.

2. Variables such as x and p from classical mechanics are represented by
Hermition operators X and P .

3. If a particle is in the state |ψ⟩, measurement of the variable represented
by Q will yield one of the eigenvalues q of this operator, with probability
P(q) = |⟨q|ψ⟩|2.

That’s why the dot product things are called amplitudes. It’s because if the bit
on the right of the dot product is representing the state of your system, and if
the bit on the left is an eigenket (bra) of some operator, then the dot product
is a probability amplitude—that is, a complex number, whose modulus squared
is the probability that a measurement of this particular property of the system
will yield this particular eigenvalue. The eigenvalue here is of course the one
associated with the eigenket on the left of the dot product.

Finally, if the left hand end of the dot product is an eigenket of the position
operator with eigenvalue x, then the dot product is the amplitude that a
measurement of the position of the system will yield the value x. That is,

• ⟨x|ψ⟩ =

• (thing whose modulus squared is the probability that system will be
found at x)

• = a wavefunction,

• which is a complex number which depends on x,

• which may be written ψ(x).
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1.4.2

I can’t resist writing down some equation to do with kets, to show how neat
Dirac’s notation really is. I’ll do it by first writing an equation using wave-
functions, which I hope will be clear to you. Then I’ll write a similar equation
using kets, then derive the wavefunction version from the ket version.

Here we go. Suppose a system is described by a wavefunction ψ(x). Sup-
pose that the system is not in an eigenstate of energy, but is in a superposition
of two different energy eigenstates u1(x) and u2(x), (of energies E1 and E2), ie

ψ(x) = a1u1(x) + a2u2(x).

What is the probability that if we measure the energy of this state, we will get
the value E1? (so that the state becomes equal to u1(x)). You should know
that the answer is |a1|2.

In ket, or state vector, language, this goes as follows. Suppose a system is
in a state described by the state vector |ψ⟩. Any state can always be written
as a superposition of energy eigenstates:

|ψ⟩ =
∑
n

|En⟩ ⟨En|ψ⟩

In our particular case, only two terms in this sum are non-zero:

|ψ⟩ = |E1⟩ ⟨E1|ψ⟩+ |E2⟩ ⟨E2|ψ⟩

What is the probability that if we measure the energy of this state, we will get
the value E1? (so that the state becomes equal to |E1⟩). The probability is
|⟨E1|ψ⟩|2.

Now let’s see what happens when we dot the previous equation from the
left with a ket |x⟩ (or bra when we turn it round) which is an eigenstate of the
position operator:

⟨x|ψ⟩ = ⟨x| (|E1⟩ ⟨E1|ψ⟩+ |E2⟩ ⟨E2|ψ⟩)
= ⟨x|E1⟩ ⟨E1|ψ⟩+ ⟨x|E2⟩ ⟨E2|ψ⟩

This is exactly our original wavefunction equation, since

⟨x|ψ⟩ = ψ(x),

⟨x|E1⟩ = u1(x)

⟨E1|ψ⟩ = a1.

Finally, we note that any ket can be expressed as a superposition of position
eigenstates, as follows:

|ψ⟩ =
∑
n

|xn⟩ ⟨xn|ψ⟩
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Dot this equation from the left with some other ket |ϕ⟩:

⟨ϕ|ψ⟩ =
∑
n

⟨ϕ|xn⟩ ⟨xn|ψ⟩

and let the position eigenstates tend to a continuum of states:

⟨ϕ|ψ⟩ =
∫

⟨ϕ|x⟩ ⟨x|ψ⟩ dx

In other words,

⟨ϕ|ψ⟩ =
∫
ϕ∗(x)ψ(x)dx

which is why the amplitude can also be called an overlap integral: this integral
is non-zero only when the two wavefunctions are both non-zero in the same
region of space, ie when they overlap one another.

1.5 Concluding remarks

I think I should finish with apologies that this description is all rather ab-
stract. I am aware that a lot of concrete physical examples of the use of the
maths would make things a lot clearer. I recommend Shankar’s book and the
Feynman lectures, volume 3, as a help towards getting you to think quantum
mechanically.
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