Lecture 1.

Classical coding theory



Summary

Central problem of communication: Communication in the presence of noise

message encode error € decode
m — u — ut+e — m
0 — 000 — 001 —
1 — 111 — 110 — 1

P(fail) = P(2 or 3 errors) = 3p*(1 — p) +p°

Code rate = E = i
n 3.

In general
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Galois Field GF(2)
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bit string = binary vector
length = n. dimensions

addition:
(1011)

+ (0110)
— (1101)

inner product:

(1011) - (0110) = (1011) = 040+140

O = = O



This is also a “parity check”

1011
-~
=
0110 = odd
Note
u-v o= v-u
u-(v+w) = u-vtu-w

A vector can be “orthogonal” to itself: 0110 - 0110 =0

Weight = number of non-zero components:  wt(1011) = 3



Distance = number of bit-flips to go from u to v.
e.g.

1011

0110

dyy = wt(u +v)

Upper limit on correctable errors t:

If

n = length of codewords

m = number of vectors in the code (thus encode log, m bits)

() 3) ()=

=“Hamming Bound” .
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Linear code

C = {u} suchthat (u+v)eC VuveCl

= linear vector space

Properties

1. size m = 2F

2. any linearly independent set of k vectors can span the space

0011 )
e.g. G = ( 1100 ) Generator matrix

3. form H having n — k rows such that
HG" =0
= all u satisfy the “parity checks” in H,

Hu' =0 Parity check matrix



4. Dual code
C+ = {v} suchthat (v-u)=0 VYucC

N.B. C' and C* overlap (e.g. both contain 00 - - - 0)

He = Geo
Ge = Hen

5. Minimum distance d(u,v) = wt(u + v) = minimum weight



Parity checking and syndrome
Recall Hu! =0; Yue O

error e : U —u-+e
Hu+e)' = Hu' + He"
= 0+ He®
— He'

= error syndrome

Can we deduce e from Hel ?
Ans.: no, since consider €' = ¢ + v:
Hu+ée)' = Hu' + He! + Ho®
= 0+ He' +0
= HeT
= each e is a member of a coset, all having the same syndrome

We can pick 1 error from each coset and call it correctable
= there are 2"7* correctable errors (with 2" syndromes).



Figure 1: [16, 5, 8] Reed-Muller code.
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Existence of good codes: Gilbert-Varshamov bound

There exists a linear [n, k, d] code if
n—1 n—1 n—1 n—k
v () ) e (B ) <
Proof:

1. Distance d if and only if every set of (d—1) cols of H is linearly independent
2. Build H as follows:

Let » = n — k = number of rows
Suppose we have formed i cols, such that every set of (d — 1) is lin. ind.
Form col. vectors by picking (d—2) or fewer of these: how many can be formed?

() (3) ()

If this is < 2" — 1 then can pick a vector not yet appearing
= get new col. such that any (d — 1) still lin. ind. | Keep going until i + 1 =n

= now have 7 + 1 cols. of H — hence condition as claimed.

11



d/n

0.5
Rate: k/n
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Lecture 2.

Principles of quantum error correction
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Quantum Error Correction: introducing main ideas

Pauli group

10 0 1 0 -1
=(od) = (Vo) = (V)

Parity check
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3 bit code

000 . 110
111 check matrix H = ( 101 )
Quantum case
0) — ]000)
1) — |[111)
Encoding network:
alo +bll>$—
10> —
10) ——
(@|0) +b[1))[0Y]0) = @]000) + b|100)
TOF 41000 + b|110)
CNOT

O 4,]000) 4 b[111)
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encode correct decode

channel
|6 ——x—.— —————— @ . L 7 .—* o>
Raie et —r
\’X"‘
O-b4 RV,
.f O SPANY, .}
noise

Noise in the channel: random bit flips: operator X with probability p

state probability
a[000) + b |111) (1—p)?
a|100) +b|011) p(1 —p)?
a]010) +b|101) p(1 —p)?
a|001) 4+ b |110) p(1 —p)?
a |110) + b]001) p*(1 —p)
a|101) + b]010) p2(1 = p)
a|011) 4+ b [100) p*(1—p)
) )

a|111) + b |000
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encode correct decode
channel
0 ——*—.— —————— @ L 7 .—*
O—D N ® I N
C AN 772 i . Il A\ >4

a

\V

e

an

l}j
ANy
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Include ancilla bits in the notation (still at time just after channel):

state

(a |OOO> +b \111)) |OO>
(a |100> +b \Oll}) |OO>
(¢]|010) + 5]101)) |00)
(a]001) + b|110)) [00)
(a|110) + b]001)) [00)
(a |101> + b \01())) |OO>
(a|011) + b[100)) |00)
(a|111) 4 b]000)) |00)
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encode correct decode

channel
|¢>——*—.——::::: —O 7 .—* |0
O * AT
C <> _____ . //f C)

\V

ya N
D\
N |
\.\/—/4
N

O
O

AWa
AN

Now after parity checks (syndrome extraction)

state probability
(a]000) + b|111))]00) (1 —p)?
(a]100) +b]011)) [11)  p(1 — p)?
(a]010) + b[101)) [10)  p(1 — p)?
(a]001) + b[110)) [01) p(1 — p)?
(a]110) + b|001)) [01) p*(1 — p)
(a]101) +b(010)) [10)  p*(1 — p)
(a]011) + b[100)) [11)  p*(1 — p)
(a|111) 4+ 6]000)) |00) P’



Next, measure the ancilla

in |0), |1) basis.

Nothing happens here, except we learn the syndrome

state

(a
(a
(a
(a
(a
(a
(a
(a

000) -+ b|111)) 00
1100) + b[011)) |1
1010) + b]101)) |1
001) + b]110)) |0
1110) + b]001)) |0
1101) + b[010)) |1
011) + b|100)) |1

) )10

111) 4 b]000

)
1)
0)
1)
1)
0)
1)
)

0
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Measurement of the ancilla
case where measurement result is 00:

state probability

(a]000) + b|111))]00) (1 — p)?

(a|111) +b[000)) [00)  p?

action: do nothing
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Measurement of the ancilla
case where measurement result is 01:

state probability

(a]001) + b[110)) [01) p(1 — p)?
(a]110) + b]001)) [01)  p*(1 — p)

action: apply X to 3rd qubit
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Result
after correction:

state probability

(a]000) + b|111))]01) p(1 — p)?
(a|111) + b]000)) [01) p*(1 — p)

Result: wrong state with probability p*(1 — p).
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Measurement of the ancilla
case where measurement result is 10:
state probability

(a|010) +b[101))[10)  p(1 — p)?

(a]101) + b]010)) [10)  p*(1 — p)

action: apply X to 2nd qubit
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Result
after correction:
state probability

(a]000) +b[111))[10)  p(1 — p)?

(a|111) + b]000)) [10)  p*(1 — p)

Result: wrong state with probability p?(1 — p).
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After correction, general conclusion:

state probability
(a]000) + b|111))]00) (1 — p)?

(a]000) + b [111)) [11)  p(1 — p)?
(a|000) +5[111))[10)  p(1 — p)*
(a|000) +b]111))[01)  p(1 — p)*
(a|111) +51000)) 01)  p*(1 —p)

(a[111) + 5 [000) [10)  p2(1 — p)

(a[111) +51000)) [11)  p*(1 —p)

(a|111) 4+ 6]000)) |00) P>

Overall probility to fail, i.e. get the wrong final state, is

3p*(1 — p)* + p* = O(p)
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More general error:
[ cos(6/2) isin(6/2)
RO) = (z’sin(@/Q) cos(0/2) )

— cos(0/2) ( - ) + isin(0/2) ( - )
= cos(0/2)] + isin(6/2) X
= cl +sX where ¢ = cos(0/2), s =1isin(6/2)

R1R2R3 = (C[ + SX) (CI + SX) (C[ + SX)
= SIT+As(IIX +IXT+XIT) +es*(XXT+ XIX +T1XX)+s°XXX

) [00) (R 3233 [4)) |00)
= (c + %s(1 flip) + cs*(2 flip) + s°(3 ﬂlp)) 1)) |00)
chedk (BITT + $#X X X) 1) |00)
+(*sIIX + s> X XT) 1) |01)
+(AsIXT + s> X1X) [4) 10)
(s XTI + cs*IX X) |¢) |11)
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At this stage the state still has all possible errors:

(PIIT + s X X X) [4h) [00) + cs(cIIX + sX XT) |¢)]01)
+cs(cIXT 4+ sX1X) ) [10) + es(e XTI + sIXX)|y) |11)

Now measure the ancilla: projection

— either (¢’ ITT+ s> XX X)) [00) /b + 56

or (cIIX +sXXI)|¢)|01) probability ¢?s”
or (cIXI+ sXIX)|y)]10) probability ¢?s”
or (ecXII+sIXX)|Y)|11) probability ¢?s”

Apply corrective X depending on the syndrome:

— outcome either  (*I1I + s°XXX) [¢) /v 4+ 56
or (cIIl +sXXX) ) (Prob = 3c?s?)

Overall error in the final state: either %, or s* with probability 3c?s?

Hence
P(fail overall) = O(s*)
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N.B. notice the discretization of errors: a continuous rotation error is projected
by the syndrome measurement onto one of a discrete set of errors.

Generalize — any classical code
G — generator network
H — parity check network.

These are “quasi classical” codes.
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Phase errors, also known as decoherence

( ci6/2 0

0 it/ ) = cos(¢/2)I +isin(¢/2)Z

Notice:

HZH =X

So perform Hadamards before and after the channel

= convert phase noise to bit-flip noise

= correct as before!

Simplest experiment:

11y
10>

H

:gi:]

10 S~

T

I
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General Noise

Any interaction of a qubit with another system can be described by some
transformation

(@]0) +6[1)) [¢), — T((a[0) +0[1))[9).]

where T" may be written
Ty | Th Tr 1 O 0 |Tx 0 |—-Ty T, 0
T = =
(T3 T4) (o T])+(TX 0>+(Ty 0 >+<0 —TZ)
= Tl + TxX + TyY 4+ 1,07
with T = (T1 + T4)/2, T, = (Tl — T4)/2, etc.
Hence any evolution can be written

) [¢) = [¥) |a), + (X ) [B)e + (Y [9)) [7)e + (Z 1) 16).

= combination of I, X, Y = X7, and Z errors.
= we only need to correct Pauli errors
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Consider the following:

where

Notice

bit flip [0) — [1)

phase flip [0) — |1)

0) = HI0)=(|0) +[1))/v2
1) = HI1)=(0) - [1))/v2
HHH(|000) +|111)) = [000) + |011) + [101) + |110)

repetition code = even weight code
C — Cct

.more generally: Dual code theorem:

HH---H Y |luy= X% |v)

ueC veCt
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This gives us a very useful hint: form states consisting of equal superposition
of all members of a linear code.

e.g.
0, = > |u)

u€Co

— |0000000) + [1010101) + [0110011) + [1101010) + [0001111) + [1011010) + [0111100) + [0010101)

However, we want more than one quantum state.

But suppose C is itself just part of a larger code Cy:
C() C Cl
e.g.

0110011
0001111
1110000

Cy has [n =7,k = 4], Co has [n =7,k = 3].

1010101
o
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The code C; allows bit errors to be corrected for both |0), and |1), = XX XIIII|0),
and combinations thereof.

The code Cy allows phase errors to be corrected, at least for the state we started
with, |0),.

Now check that |1); can also be phase-error corrected.
Use

HXXXIIII=ZZZIIITH where H=HH---H

S HXXXIIII ¥ |u) = ZZZIIII ¥ |v)

ueCy veCy

— still satisfies all the checks of Cy

It works! Therefore we now have 2 quantum states, |0),; and |1); called quantum
codewords, which can be corrected for X and Z errors, and hence also for Y
errors. This is a quantum code for encoding 1 qubit into 7.
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Complete parity checking for 7-bit code:
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Hence

Theorem (CSS codes):
A pair of classical codes C; = [n, k1,d1], Co = [n, ks, do] with

CjcCl

can be used to construct a quantum code of size k; — (n — ko) = k1 + ko — n
with minimum distance d; for X errors, dy for Z errors.

e.g. If C; contains its dual, then Cy = C; and we have

K:2k1—n

— existence of good quantum codes (since there exist self-dual classical codes
above the Gilbert-Varshamov bound).

“Shannon theorem” for perfect communication
through a noisy quantum channel.
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Examples:

e 7-bit code: Hamming code contains its dual (every row of H satisfies all
the checks in H)

e [127,85,13] classical BCH code — [[127,43, 13]] quantum BCH code
e (23,12, 7] classical Golay code — [[23,1,7]] quantum code

e.g. suppose we have 23 atoms, each decaying by spontaneous emission, with
lifetime 1 s.

suppose processor has ‘clock rate’ 100 kHz (i.e. 2-bit gate takes 10 us)
2 X 88 = 176 gates to extract parity checks, completed in 8 steps.
correct the atoms every ms = error probability for each atom ~ 0.001
P(uncorrectable error) ~ 8855 x (0.001)* ~ 108

Repeat 10° times: preserve the encoded qubit for 10° ms = 1 day!
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Lecture 3.

Further remarks on error correction
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Conditions for a quantum error correcting code:

Code C can correct a set of errors £ if and only if

<U|E1E2 |”U> =0
(u| BBy lu) = (v| E1Es |v)

for all £y, Ey € £ and |u) , |v) € C, |u) # |v).

38



Quantum Hamming bound

For nondegenerate codes, where (u| By Es |u) = 0:

m<1+3<?)+9<g>+...+3t<?>>Szn

e.g. single-error correcting:

1 qubit — 4 errors = no correction

2 qubit — 7 errors

3 qubit — 10 errors

4 qubit — 13 errors

5 qubit — 16 errors = code may exist
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5-bit code

It does exist!

11000 | 00101
H, | H.
| 000 10010 | g
00000 | 11111

00011 | 10100

One possible choice of the two codewords is

0), = [00000) + [11000) + [01100) — |10100)
+ ]00110) — |11110) — [01010) — |10010)
+ ]00011) — |11011) — |01111) — |10111)
— 00101) — [11101) — [01001) + [10001) ,

D, = X1 ]0) .
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Hamming and G-V bounds in limit of large codeword length n

1

0.9}
0.8}"
0.7F '
0.6fF
c \
— 0.5}
X
0. 4} '
0.3} N

0.2} "

0 0.05 0.1 0. 15 0.2 0.25
t/n
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Decoherence-free subspace

What if the noise is such that the errors are all in the stabilizer?
Then no correction is needed! The codespace is simply unaffected by the noise.

Example: the energy gap of all the qubits gets shifted by the same amount.

Resulting error is:

PINEZ1t)2h INEZst /21 _ JINE(Zy+25)t /20
Et 1 (AEt\?
= ]+ I+ Zy) — =~ | =) (L +Zo)* + -
iy (At 2 2<2h> (1 + 2)" +
Need (Z1+ Zy) |Y) = 0
= Zi|) = =22 )
= Z1Zy ) = — )

Therefore use stabilizer — 71 25,
code =|01), [10).

Both states have the same energy = they both aquire the same extra phase =
it appears as a global phase = no effect.
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Noise again
(1.) Unitary errors.
Define the norm of a vector:
o} I = V(v ]v)
Let

E(U,V) = max||[(U = V)[¢)]]

This is a measure of how bad the state is if operation V' is implemented when
U was intended.

It can be shown that

E(UmUm—l T U17 VilVin-1-+- Vm) < Z E(U] ‘/J)
j=1

i.e. errors add.
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(2.) General errors.

Hamiltonian for evolution of a system of qubits, interacting with each other
and with anything else:

H =Y FE;® H'

Evolution of the reduced density matrix of the qubits:
po — 2 ai; EipoEj
ij
QEC: — Fpo+ Y. ayEjpE]

uncorrectable

fidelity F=1-"Tr > aiy Elpo E;

uncorrectable

~ 1= > ay

uncorrectable

a;; = ‘the probability that error E; occurs’
= the probability that the syndrome extraction projects the state onto one
which differs from the noise-free state by error operator E;
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We can always write

H = > E®H; + > FE®Hp;+ > E®H; +...

wt(E)=1 wt(E)=2 wt(E)=3

Independent noise: only weight 1 terms.
More generally: coupling constants usually of order €' /¢t!.

Then in the worst case (a;; adding in phase):

2
l1-F~P(t+1)~ <3t+1 ( " 1) et“)

L+

or very often:

1—F2P(t+1)23t+1( n )EQ(H_l)
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The evolution of a multiply-entangled system coupled to
an uncontrolled environment is a non-trivial problem!

QEC will directly reveal the high-order correlations in
the evolution of many-body entangled quantum systems.
These terms are either small enough to permit quantum

computing, or else they will reveal physics which is not
currently understood.
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