After correction, general conclusion:

state probability
(a ]000) + b|111)) [00) (1 — p)?
(a]000) + b|111)) [11) p(1 — p)?
(a]000) + b|111)) [10) p(1 — p)?
(a]000) + b|111))]01) p(1 — p)?
(a|111) + b]000)) [01)  p*(1 — p)
(a[111) +5]000)) [10)  p*(1 —p)
(a[111) +5]000)) [11)  p*(1 —p)
(a|111) 4+ 6]000)) |00) p?

Overall probability to fail, i.e. get the wrong final state, is

3p*(1—p)* +p° = O(p®)



More general error:

B cos(0/2) isin(0/2)
R(0) = (isin(Q/Q) 008(9/2))

_ Cos(e/z)( é (1)) +isin(9/2)< (1) (1J )

= cos(0/2) I + isin(0/2) X
= cl +sX where ¢ = cos(0/2), s =1isin(6/2)

RiRyRy = (cl +sX)(cl 4+ sX)(cl 4 sX)
= SIT+As(TIX +IXT+ XIT) +es*(XXT+ XIX +TXX)+s° XXX

3—Qbit ancilla Noise
) ® [00) X R2R3!¢>)®|00>

(R
— (¢ + *s(1 flip) + ¢s*(2 flip) + s*(3 flip)) |¢) ® |00)
(

parlty heck 3771 4 S X X X)|1) @ [00)
+(AZSITX + es*? X X)) ® |01)
+H(PSIXT + es*XIX)|¢) @ [10)
H(PSXTT + s IX X)) @ |11)



At this stage the state still has all possible errors:

(PIIT + s X X X)) ® 00) + es(cIIX + sXXT)[v) @ |01)
+cs(el X1 + sXIX) ) ® [10) + es(e XTI + sIX X)) & [11)

Now measure the ancilla: projection

— either (I 4 XX X)|[¢) @ [00) /Vcb + 56
or (cIlIX +sXXI)[y)® |01) probability ¢*s*
or (cIXI+sXIX)[Y)® [10) probability ¢*s’
or (cXII+sIXX)[Y)®|[11) probability ¢*s?

Apply corrective X depending on the syndrome:

— outcome either (11T + s* X X X)|p) /v/cb + 56
or (cIIl+ sXXX)[) (Prob = 3c%s?)

Error term in the final state: either (s°), or (s with probability 3c¢%s?)
Hence

P(fail overall) = O(s*) = O(sin* 9)



N.B. notice the discretization of errors: a continuous rotation error is projected
by the syndrome measurement onto either the identity or a bit flip (Pauli X):
a discrete set of errors.

Generalize:

{000,111} — any classical code C
G — logic gate network to create the quantum states
He — logic gate network to perform the parity check (syndrome) measurements.

These are “quasi classical” codes.



Phase errors, also known as decoherence (random ¢):
ez 0 .
0 it | = cos(¢/2) I +isin(¢/2) Z
Notice:
HZH =X

So perform Hadamards before and after the channel
= convert phase noise to bit-flip noise
= correct as before!

Simplest experiment:
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Quantum Error Correction: introducing main ideas

Pauli group
10 01 0 —1 1 0
clon) (Vo) =) S

Parity check

>—{~]

e
o
WV
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VYV
o

Discretization of errors: a continuous error is projected by a syndrome mea-
surement onto one of a discrete set of errors.



We already noticed

HHH(|000) + |111)) = |000) 4 [011) + |101) + |110)
repetition code = even weight code
C — ct

... more generally: Dual code theorem: (steane 199)

HH---H Y |uy= X |v)

ueC veCt

This gives us a very useful hint: form states consisting of equal superposition
of all members of a linear code.



e.g.
0), = Z’w
u€Cop

= |0000000) + [1010101) + |[0110011) + [1101010) + |0001111) + [1011010) + [0111100) + |0010101)

However, we want more than one quantum state.

But suppose Cj is itself just part of a larger code Cg:

COCCK

then we can form

1), = Z |u)

UG(CK\Co)
= [1111111) 4 [0101010) + |1001100) + [0010101) + [1110000) + [0100101) + [1000011) + |1101010)



a|O>L+b|1>L =

a (10000000) + [1010101) + [0110011) + [1101010) + [0001111) + [1011010) + [0111100) + [0010101))
+b ([1111111) +]0101010) + [1001100) + [0010101) + [1110000) + [0100101) + [1000011) + |1101010})

What ‘beast’ have we got here?

1. We can measure all the parity checks of the larger code Cx: both |0), and
1), are eigenstates of ZIZIZIZ, IZZI1ZZ, I11ZZZZ.
— thus deduce bit-flips (up to the correction ability of Ck).

2. What about phase flips (Pauli Z)?

To see their effect, use 7 = HXH,

— they give ‘bit flips’ in the other basis

but |0); transforms into another code in the other basis (namely Cy")

AND [1), transforms into that SAME code Cj- (with some sign changes)

— we can do FURTHER parity measurements, now in the other basis
(equivalent to measuring the observables X IXITXIX, IXXIIXX, ITIXXXX)
— deduce phase-flip syndrome



Complete parity checking for 7-bit code:
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This example has:

Cx = [7,4, 3] single-error correcting code,

0),; constructed from Cy = [7,3,4] = (Cx with a further overall parity check),
and the code Ci- appearing in the second basis is also C (an example of a code
that contains its dual)

= single-error correction of BOTH bit flips AND phase flips
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We now have 2 “quantum codewords” |0), and |1),. This is a code
encoding 1 qubit into 7. It can recover from a bit flip of an arbitrary
qubit, and from a phase flip of an arbitrary qubit, and from both at
once.

11



General Noise

Any interaction of a qubit with another system can be described by some
transformation

(a]0) +0|1)[#). = Tl(a]0) +b[1))|¢).]

where T" may be written
Ty | Th Tr | O 0 | Tx 0 |—Ty T, 0
T: pr—
(7r) - (o) () () (5
= 7l + TxY®X + TyY + 1T;,7

with TI = (Tl + T4)/2, TZ = (Tl — T4)/2, etc.
Hence any evolution can be written

) |9)e = |9} [}, + (X |)) [B). + (Y [)) 7). + (Z|9)) [6).

= combination of I, X, Y = X7, and Z errors.
= we only need to correct Pauli errors

12



= our 7-qubit encoding can recover from a
completely arbitrary corruption of any single qubit,

including relaxation, entanglement with environ-
ment, etc.

This is called a single-error-correcting quantum code.

13



Extension to larger codes

The generalization to correct more errors is immediate:

e start from any self-dual classical code, e.g. [24,12,8] Golay code

e ‘puncture’ (knock off 1 bit and 1 line from the generator)
— obtain Cy = [23,11,8] C Cx = [23,12,7] = C

e Thus encode 1 qubit into 23 qubits with 3-error-correcting code, etc.

e Explicit construction for encoding and correction gate networks from the
generator and parity check matrices.

Can we also generalize to “good codes”, i.e. efficient codes?

Yes!

o seek Cy C Cy with larger Cg, so that Cy is one of many (i.e. 2%) subsets
(cosets)

14



Hence

Theorem (CSS codes): (Calderbank, Shor, Steane 1996)
A pair of classical codes C; = [n, k1,d;], Co = [n, ks, do] with

C;‘CC1

can be used to construct a quantum code of size k1 — (n — ko) = k1 + ka — n
with minimum distance d; for X errors, dy for Z errors.

e.g. If C; contains its dual, then Cy = C; and we have

K:2k:1—n

— existence of good quantum codes (since there exist self-dual classical codes
above the Gilbert-Varshamov bound).

“Shannon theorem” for perfect communication
through a noisy quantum channel.

15



Evolution in the presence of noise.

Hamiltonian for evolution of a system of qubits, interacting with each other
and with anything else:

H =Y E ® H

Evolution of the reduced density matrix of the qubits:

po — D aij EipoE;
ij
QEC: — fpo+ > aij B po B

uncorrectable F;, F;

where fidelity f=1-Tr > aij E! po E;

uncorrectable E;, F;

> 1- > |aijl

uncorrectable E;, F;
a; = ‘the probability that error E; occurs’

= the probability that the syndrome extraction projects the state onto one
which differs from the noise-free state by error operator FE;

16



We can always write

H = > E®H; + > FE®Hp+ > FE®H; +...

wt(E)=1 wt(E)=2 wt(E)=3

Independent noise: only weight 1 terms.
More generally: coupling constants usually of order €' /¢!.

Then in the worst case (a;; adding in phase):

2
1-F~Pt+1)~ (3”1 ( " 1) et“)

L+

or very often:

_F ~ ~at+1 [ T 2(t+1)
l1-F~P(t+1)~3 (t+1)€

17



The evolution of a multiply-entangled system coupled to
an uncontrolled environment is a non-trivial problem!

QEC will directly reveal the high-order correlations in
the evolution of many-body entangled quantum systems.
These terms are either small enough to permit quantum

computing, or else they will reveal physics which is not
currently understood.

18



Examples:

e 7-bit code: [n =7,k =4,d = 3| classical Hamming code
— [[n=7,K = 1,d = 3]] (1-error-correcting) quantum code

e [23,12,7] classical Golay code — [[23,1,7]] (3-err-corr.) quantum code

e [127,85, 13] classical BCH code — [[127,43, 13]] (6-err-corr.) quantum BCH
code

e.g. Golay code: suppose we have 23 atoms, each decaying by spontaneous
emission, with lifetime 1 s.

suppose processor has ‘clock rate’ 100 kHz (i.e. 2-bit gate takes 10 us)
2 X 88 = 176 gates to extract parity checks, completed in 8 steps.

hence correct the atoms every ms = error probability for each atom ~ 0.001

23

P(uncorrectable error) ~ ( .

>><(o.001)4 ~ 108

Repeat 10® times: preserve the encoded qubit for 10°> ms = 1 day!
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Further remarks on error correction

Conditions for a quantum error correcting code:

Code C can correct a set of errors £ if and only if

<U| E1E2 |1}> =0
(u| 1By lu) = (v| E1Ey|v)

for all £y, By € € and |u) , |v) € C, |u) # |v).

21



Quantum Hamming bound

For nondegenerate codes, where (u| £y Fs |u) = 0:

RHEI

w1+

n
1

e.g. single-error correcting:

1 qubit
2 qubit
3 qubit
4 qubit
5 qubit

bl

4 errors = no correction
7 errors

10 errors

13 errors

16 errors = code may exist

22



5-bit code

It does exist!

11000 | 00101
01100 | 10010
00110 | 01001 |’
00011 | 10100

H, | H.
G = | 11111 | 00000
00000 | 11111

One possible choice of the two codewords is

0), = |00000) + |11000) 4 |01100) — [10100)
+ {00110 — |11110) — |01010) — |10010)
+ ]00011) — |11011) — |01111) — |10111)
— 00101) — [11101) — [01001) + [10001) ,

1, = X1 ]0).

23



Hamming and G-V bounds in limit of large codeword length n

0 0.05 0.1 0.15 0.2 0. 25
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Decoherence-free subspace
What if the noise is such that the errors are all in the stabilizer?
Then no correction is needed! The codespace is simply unaffected by the noise.

Example: the energy gap of all the qubits gets shifted by the same amount.

Error:
PIAEZ1t/2h JINEZst 21 JIAE(Z1+Z)t /20
AFEt 1 (AEt\?
= ]+ I+ Zy) — = | == (L +Zo)* + -
iy (At ) 2<2h> [+ 2)" +
Need
(Z1+ Zy) [yp) = 0
= ZiW) = —Zy|Y)
= ZZy )y = — )

Therefore use stabilizer — 21 Zs,
code =|01), [10).

Both states have the same energy = they both acquire the same extra phase

25



= it appears as a global phase = no effect.
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Noise again
(1.) Unitary errors.

Define the norm of a vector:

) | = V(v |v)
Let
EU,V) = maxy,|[(U=V) )|

This is a measure of how bad the state is if operation V' is implemented when
U was intended.

It can be shown that

E(UmUm_1 UL VR Vi—r - Vm) < Z E(Uj VJ)
j=1

i.e. errors add.
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