
After correction, general conclusion:

state probability

(a |000〉+ b |111〉) |00〉 (1− p)3

(a |000〉+ b |111〉) |11〉 p(1− p)2

(a |000〉+ b |111〉) |10〉 p(1− p)2

(a |000〉+ b |111〉) |01〉 p(1− p)2

(a |111〉+ b |000〉) |01〉 p2(1− p)
(a |111〉+ b |000〉) |10〉 p2(1− p)
(a |111〉+ b |000〉) |11〉 p2(1− p)
(a |111〉+ b |000〉) |00〉 p3

Overall probability to fail, i.e. get the wrong final state, is

3p2(1− p)2 + p3 = O(p2)
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More general error:

R(θ) =


 cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)




= cos(θ/2)


 1 0

0 1


 + i sin(θ/2)


 0 1

1 0




= cos(θ/2) I + i sin(θ/2) X

= cI + sX where c = cos(θ/2), s = i sin(θ/2)

R1R2R3 = (cI + sX)(cI + sX)(cI + sX)

= c3III + c2s(IIX + IXI + XII) + cs2(XXI + XIX + IXX) + s3XXX

3−Qbit
|ψ〉 ⊗

ancilla
|00〉 noise−→ (R1R2R3|ψ〉)⊗ |00〉

=
(
c3 + c2s(1 flip) + cs2(2 flip) + s3(3 flip)

) |ψ〉 ⊗ |00〉
parity check−→ (c3III + s3XXX)|ψ〉 ⊗ |00〉

+(c2sIIX + cs2XXI)|ψ〉 ⊗ |01〉
+(c2sIXI + cs2XIX)|ψ〉 ⊗ |10〉
+(c2sXII + cs2IXX)|ψ〉 ⊗ |11〉
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At this stage the state still has all possible errors:

(c3III + s3XXX)|ψ〉 ⊗ |00〉+ cs(cIIX + sXXI)|ψ〉 ⊗ |01〉
+cs(cIXI + sXIX)|ψ〉 ⊗ |10〉+ cs(cXII + sIXX)|ψ〉 ⊗ |11〉

Now measure the ancilla: projection

→ either (c3III + s3XXX)|ψ〉 ⊗ |00〉 /
√

c6 + s6

or (cIIX + sXXI)|ψ〉 ⊗ |01〉 probability c2s2

or (cIXI + sXIX)|ψ〉 ⊗ |10〉 probability c2s2

or (cXII + sIXX)|ψ〉 ⊗ |11〉 probability c2s2

Apply corrective X depending on the syndrome:

→ outcome either (c3III + s3XXX)|ψ〉 /
√

c6 + s6

or (cIII + sXXX)|ψ〉 (Prob = 3c2s2)

Error term in the final state: either (s6), or (s2 with probability 3c2s2)
Hence

P (fail overall) = O(s4) = O(sin4 θ)
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N.B. notice the discretization of errors: a continuous rotation error is projected
by the syndrome measurement onto either the identity or a bit flip (Pauli X):
a discrete set of errors.

Generalize:

{000, 111} −→ any classical code C
GC → logic gate network to create the quantum states
HC → logic gate network to perform the parity check (syndrome) measurements.

These are “quasi classical” codes.
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Phase errors, also known as decoherence (random φ):

 eiφ/2 0

0 e−iφ/2


 = cos(φ/2) I + i sin(φ/2) Z


Z =


 1 0

0 −1







Notice:

HZH = X

So perform Hadamards before and after the channel
⇒ convert phase noise to bit-flip noise
⇒ correct as before!

Simplest experiment:

0
0

ψ
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Quantum Error Correction: introducing main ideas

Pauli group

I =


 1 0

0 1


 , X =


 0 1

1 0


 , Y =


 0 −1

1 0


 , Z =


 1 0

0 −1


 .

Parity check

0

Discretization of errors: a continuous error is projected by a syndrome mea-
surement onto one of a discrete set of errors.
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We already noticed

HHH(|000〉+ |111〉) = |000〉+ |011〉+ |101〉+ |110〉
repetition code

HHH↔ even weight code

C ↔ C⊥

. . . more generally: Dual code theorem: (Steane 1996)

HH · · ·H ∑

u∈C
|u〉 =

∑

v∈C⊥
|v〉

This gives us a very useful hint: form states consisting of equal superposition
of all members of a linear code.
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e.g.

|0〉L =
∑

u∈C0
|u〉

= |0000000〉+ |1010101〉+ |0110011〉+ |1101010〉+ |0001111〉+ |1011010〉+ |0111100〉+ |0010101〉

However, we want more than one quantum state.

But suppose C0 is itself just part of a larger code CK :

C0 ⊂ CK

then we can form

|1〉L =
∑

u∈(CK\C0)

|u〉

= |1111111〉+ |0101010〉+ |1001100〉+ |0010101〉+ |1110000〉+ |0100101〉+ |1000011〉+ |1101010〉
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a |0〉L + b |1〉L =

a
(
|0000000〉+ |1010101〉+ |0110011〉+ |1101010〉+ |0001111〉+ |1011010〉+ |0111100〉+ |0010101〉

)

+b
(
|1111111〉+ |0101010〉+ |1001100〉+ |0010101〉+ |1110000〉+ |0100101〉+ |1000011〉+ |1101010〉

)

What ‘beast’ have we got here?

1. We can measure all the parity checks of the larger code CK : both |0〉L and
|1〉L are eigenstates of ZIZIZIZ, IZZIIZZ, IIIZZZZ.
−→ thus deduce bit-flips (up to the correction ability of CK).

2. What about phase flips (Pauli Z)?
To see their effect, use Z = HXH,
−→ they give ‘bit flips’ in the other basis
but |0〉L transforms into another code in the other basis (namely C⊥0 )
AND |1〉L transforms into that SAME code C⊥0 (with some sign changes)
−→ we can do FURTHER parity measurements, now in the other basis
(equivalent to measuring the observables XIXIXIX, IXXIIXX, IIIXXXX)
−→ deduce phase-flip syndrome
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Complete parity checking for 7-bit code:

This example has:
CK = [7, 4, 3] single-error correcting code,
|0〉L constructed from C0 = [7, 3, 4] = (CK with a further overall parity check),
and the code C⊥0 appearing in the second basis is also CK (an example of a code
that contains its dual)
⇒ single-error correction of BOTH bit flips AND phase flips
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We now have 2 “quantum codewords” |0〉L and |1〉L. This is a code
encoding 1 qubit into 7. It can recover from a bit flip of an arbitrary
qubit, and from a phase flip of an arbitrary qubit, and from both at
once.
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General Noise

Any interaction of a qubit with another system can be described by some
transformation

(a |0〉+ b |1〉) |φ〉e → T [(a |0〉+ b |1〉) |φ〉e]
where T may be written

T =


 T1 T2

T3 T4


 =


 TI 0

0 TI


 +


 0 TX

TX 0


 +


 0 −TY

TY 0


 +


 TZ 0

0 −TZ




= TI ⊗ I + TX ⊗X + TY ⊗ Y + TZ ⊗ Z

with TI = (T1 + T4)/2, TZ = (T1 − T4)/2, etc.

Hence any evolution can be written

|ψ〉 |φ〉e → |ψ〉 |α〉e + (X |ψ〉) |β〉e + (Y |ψ〉) |γ〉e + (Z |ψ〉) |δ〉e

= combination of I, X, Y = XZ, and Z errors.
⇒ we only need to correct Pauli errors
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⇒ our 7-qubit encoding can recover from a
completely arbitrary corruption of any single qubit,
including relaxation, entanglement with environ-
ment, etc.

This is called a single-error-correcting quantum code.
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Extension to larger codes

The generalization to correct more errors is immediate:

• start from any self-dual classical code, e.g. [24,12,8] Golay code

• ‘puncture’ (knock off 1 bit and 1 line from the generator)
→ obtain C0 = [23, 11, 8] ⊂ CK = [23, 12, 7] = C⊥0

• Thus encode 1 qubit into 23 qubits with 3-error-correcting code, etc.

• Explicit construction for encoding and correction gate networks from the
generator and parity check matrices.

Can we also generalize to “good codes”, i.e. efficient codes?

Yes!

• seek C0 ⊂ CK with larger CK , so that C0 is one of many (i.e. 2K) subsets
(cosets)
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Hence

Theorem (CSS codes): (Calderbank, Shor, Steane 1996)

A pair of classical codes C1 = [n, k1, d1], C2 = [n, k2, d2] with

C⊥2 ⊂ C1

can be used to construct a quantum code of size k1 − (n − k2) = k1 + k2 − n

with minimum distance d1 for X errors, d2 for Z errors.

e.g. If C1 contains its dual, then C2 = C1 and we have

K = 2k1 − n

−→ existence of good quantum codes (since there exist self-dual classical codes
above the Gilbert-Varshamov bound).

−→ “Shannon theorem” for perfect communication
through a noisy quantum channel.
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Evolution in the presence of noise.

Hamiltonian for evolution of a system of qubits, interacting with each other
and with anything else:

HI =
∑

i

Ei ⊗He
i

Evolution of the reduced density matrix of the qubits:

ρ0 → ∑

ij

aij Ei ρ0Ej

QEC: → fρ0 +
∑

uncorrectable Ei,Ej

aij E ′
i ρ0 E ′

j

where fidelity f = 1− Tr




∑

uncorrectable Ei,Ej

aij E ′
i ρ0 E ′

j




≥ 1− ∑

uncorrectable Ei,Ej

|aij|

aii = ‘the probability that error Ei occurs’
= the probability that the syndrome extraction projects the state onto one
which differs from the noise-free state by error operator Ei
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We can always write

HI =
∑

wt(E)=1
E ⊗He

E +
∑

wt(E)=2
E ⊗He

E +
∑

wt(E)=3
E ⊗He

E + . . .

Independent noise: only weight 1 terms.
More generally: coupling constants usually of order εt/t!.

Then in the worst case (aij adding in phase):

1− F ' P (t + 1) '

3t+1


 n

t + 1


 εt+1




2

or very often:

1− F ' P (t + 1) ' 3t+1


 n

t + 1


 ε2(t+1)
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The evolution of a multiply-entangled system coupled to
an uncontrolled environment is a non-trivial problem!

QEC will directly reveal the high-order correlations in
the evolution of many-body entangled quantum systems.
These terms are either small enough to permit quantum
computing, or else they will reveal physics which is not
currently understood.
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Examples:

• 7-bit code: [n = 7, k = 4, d = 3] classical Hamming code
→ [[n = 7, K = 1, d = 3]] (1-error-correcting) quantum code

• [23, 12, 7] classical Golay code → [[23, 1, 7]] (3-err-corr.) quantum code

• [127, 85, 13] classical BCH code→ [[127, 43, 13]] (6-err-corr.) quantum BCH
code

e.g. Golay code: suppose we have 23 atoms, each decaying by spontaneous
emission, with lifetime 1 s.

suppose processor has ‘clock rate’ 100 kHz (i.e. 2-bit gate takes 10 µs)

2× 88 = 176 gates to extract parity checks, completed in 8 steps.

hence correct the atoms every ms ⇒ error probability for each atom ' 0.001

P (uncorrectable error) '
(

23
4

)
×(0.001)4 ' 10−8

Repeat 108 times: preserve the encoded qubit for 108 ms = 1 day!
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Further remarks on error correction

Conditions for a quantum error correcting code:

Code C can correct a set of errors E if and only if

〈u|E1E2 |v〉 = 0

〈u|E1E2 |u〉 = 〈v|E1E2 |v〉

for all E1, E2 ∈ E and |u〉 , |v〉 ∈ C, |u〉 6= |v〉.
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Quantum Hamming bound

For nondegenerate codes, where 〈u|E1E2 |u〉 = 0:

m


1 + 3


 n

1


 + 9


 n

2


 + · · ·+ 3t


 n

t





 ≤ 2n

e.g. single-error correcting:

1 qubit → 4 errors ⇒ no correction

2 qubit → 7 errors

3 qubit → 10 errors

4 qubit → 13 errors

5 qubit → 16 errors ⇒ code may exist
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5-bit code

It does exist!

H =




11000 00101
01100 10010
00110 01001
00011 10100




, G =




Hx Hz

11111 00000
00000 11111


 .

One possible choice of the two codewords is

|0〉L = |00000〉+ |11000〉+ |01100〉 − |10100〉
+ |00110〉 − |11110〉 − |01010〉 − |10010〉
+ |00011〉 − |11011〉 − |01111〉 − |10111〉
− |00101〉 − |11101〉 − |01001〉+ |10001〉 ,

|1〉L = X11111 |0〉L .
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Hamming and G-V bounds in limit of large codeword length n
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Decoherence-free subspace

What if the noise is such that the errors are all in the stabilizer?

Then no correction is needed! The codespace is simply unaffected by the noise.

Example: the energy gap of all the qubits gets shifted by the same amount.

Error:

ei∆EZ1t/2h̄ei∆EZ2t/2h̄ = ei∆E(Z1+Z2)t/2h̄

= I + i
∆Et

2h̄
(Z1 + Z2)− 1

2

(
∆Et

2h̄

)2

(Z1 + Z2)
2 + · · ·

Need

(Z1 + Z2) |ψ〉 = 0

⇒ Z1 |ψ〉 = −Z2 |ψ〉
⇒ Z1Z2 |ψ〉 = − |ψ〉

Therefore use stabilizer −Z1Z2,

code = |01〉 , |10〉 .

Both states have the same energy ⇒ they both acquire the same extra phase
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⇒ it appears as a global phase ⇒ no effect.

26



Noise again

(1.) Unitary errors.

Define the norm of a vector:

|| |v〉 || ≡
√
〈v | v〉

Let

E(U, V ) ≡ max|ψ〉||(U − V ) |ψ〉 ||

This is a measure of how bad the state is if operation V is implemented when
U was intended.

It can be shown that

E(UmUm−1 · · ·U1, VmVm−1 · · ·Vm) ≤
m∑

j=1
E(Uj, Vj)

i.e. errors add.
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